// This may look like C code, but it is really -*- C++ -*- /* Copyright (C) 1988 Free Software Foundation written by Doug Lea (dl@rocky.oswego.edu) This file is part of the GNU C++ Library. This library is free software; you can redistribute it and/or modify it under the terms of the GNU Library General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Library General Public License for more details. You should have received a copy of the GNU Library General Public License along with this library; if not, write to the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */ #ifdef __GNUG__ #pragma implementation #endif #include #include #include ".Vec.h" // error handling void default_Vec_error_handler(const char* msg) { cerr << "Fatal Vec error. " << msg << "\n"; exit(1); } one_arg_error_handler_t Vec_error_handler = default_Vec_error_handler; one_arg_error_handler_t set_Vec_error_handler(one_arg_error_handler_t f) { one_arg_error_handler_t old = Vec_error_handler; Vec_error_handler = f; return old; } void Vec::error(const char* msg) { (*Vec_error_handler)(msg); } void Vec::range_error() { (*Vec_error_handler)("Index out of range."); } Vec::Vec(const Vec& v) { s = new [len = v.len]; * top = &(s[len]); * t = s; const * u = v.s; while (t < top) *t++ = *u++; } Vec::Vec(int l, fill_value) { s = new [len = l]; * top = &(s[len]); * t = s; while (t < top) *t++ = fill_value; } Vec& Vec::operator = (const Vec& v) { if (this != &v) { delete [] s; s = new [len = v.len]; * top = &(s[len]); * t = s; const * u = v.s; while (t < top) *t++ = *u++; } return *this; } void Vec::apply(Procedure f) { * top = &(s[len]); * t = s; while (t < top) (*f)(*t++); } // can't just realloc since there may be need for constructors/destructors void Vec::resize(int newl) { * news = new [newl]; * p = news; int minl = (len < newl)? len : newl; * top = &(s[minl]); * t = s; while (t < top) *p++ = *t++; delete [] s; s = news; len = newl; } Vec concat(Vec & a, Vec & b) { int newl = a.len + b.len; * news = new [newl]; * p = news; * top = &(a.s[a.len]); * t = a.s; while (t < top) *p++ = *t++; top = &(b.s[b.len]); t = b.s; while (t < top) *p++ = *t++; return Vec(newl, news); } Vec combine(Combiner f, Vec& a, Vec& b) { int newl = (a.len < b.len)? a.len : b.len; * news = new [newl]; * p = news; * top = &(a.s[newl]); * t = a.s; * u = b.s; while (t < top) *p++ = (*f)(*t++, *u++); return Vec(newl, news); } Vec::reduce(Combiner f, base) { r = base; * top = &(s[len]); * t = s; while (t < top) r = (*f)(r, *t++); return r; } Vec reverse(Vec& a) { * news = new [a.len]; if (a.len != 0) { * lo = news; * hi = &(news[a.len - 1]); while (lo < hi) { tmp = *lo; *lo++ = *hi; *hi-- = tmp; } } return Vec(a.len, news); } void Vec::reverse() { if (len != 0) { * lo = s; * hi = &(s[len - 1]); while (lo < hi) { tmp = *lo; *lo++ = *hi; *hi-- = tmp; } } } int Vec::index( targ) { for (int i = 0; i < len; ++i) if (EQ(targ, s[i])) return i; return -1; } Vec map(Mapper f, Vec& a) { * news = new [a.len]; * p = news; * top = &(a.s[a.len]); * t = a.s; while(t < top) *p++ = (*f)(*t++); return Vec(a.len, news); } int operator == (Vec& a, Vec& b) { if (a.len != b.len) return 0; * top = &(a.s[a.len]); * t = a.s; * u = b.s; while (t < top) if (!(EQ(*t++, *u++))) return 0; return 1; } void Vec::fill( val, int from, int n) { int to; if (n < 0) to = len - 1; else to = from + n - 1; if ((unsigned)from > (unsigned)to) range_error(); * t = &(s[from]); * top = &(s[to]); while (t <= top) *t++ = val; } Vec Vec::at(int from, int n) { int to; if (n < 0) { n = len - from; to = len - 1; } else to = from + n - 1; if ((unsigned)from > (unsigned)to) range_error(); * news = new [n]; * p = news; * t = &(s[from]); * top = &(s[to]); while (t <= top) *p++ = *t++; return Vec(n, news); } Vec merge(Vec & a, Vec & b, Comparator f) { int newl = a.len + b.len; * news = new [newl]; * p = news; * topa = &(a.s[a.len]); * as = a.s; * topb = &(b.s[b.len]); * bs = b.s; for (;;) { if (as >= topa) { while (bs < topb) *p++ = *bs++; break; } else if (bs >= topb) { while (as < topa) *p++ = *as++; break; } else if ((*f)(*as, *bs) <= 0) *p++ = *as++; else *p++ = *bs++; } return Vec(newl, news); } static int gsort(*, int, Comparator); void Vec::sort (Comparator compar) { gsort(s, len, compar); } // An adaptation of Schmidt's new quicksort static inline void SWAP(* A, * B) { tmp = *A; *A = *B; *B = tmp; } /* This should be replaced by a standard ANSI macro. */ #define BYTES_PER_WORD 8 #define BYTES_PER_LONG 4 /* The next 4 #defines implement a very fast in-line stack abstraction. */ #define STACK_SIZE (BYTES_PER_WORD * BYTES_PER_LONG) #define PUSH(LOW,HIGH) do {top->lo = LOW;top++->hi = HIGH;} while (0) #define POP(LOW,HIGH) do {LOW = (--top)->lo;HIGH = top->hi;} while (0) #define STACK_NOT_EMPTY (stack < top) /* Discontinue quicksort algorithm when partition gets below this size. This particular magic number was chosen to work best on a Sun 4/260. */ #define MAX_THRESH 4 /* Order size using quicksort. This implementation incorporates four optimizations discussed in Sedgewick: 1. Non-recursive, using an explicit stack of pointer that store the next array partition to sort. To save time, this maximum amount of space required to store an array of MAX_INT is allocated on the stack. Assuming a 32-bit integer, this needs only 32 * sizeof (stack_node) == 136 bits. Pretty cheap, actually. 2. Chose the pivot element using a median-of-three decision tree. This reduces the probability of selecting a bad pivot value and eliminates certain extraneous comparisons. 3. Only quicksorts TOTAL_ELEMS / MAX_THRESH partitions, leaving insertion sort to order the MAX_THRESH items within each partition. This is a big win, since insertion sort is faster for small, mostly sorted array segements. 4. The larger of the two sub-partitions is always pushed onto the stack first, with the algorithm then concentrating on the smaller partition. This *guarantees* no more than log (n) stack size is needed! */ static int gsort ( *base_ptr, int total_elems, Comparator cmp) { /* Stack node declarations used to store unfulfilled partition obligations. */ struct stack_node { *lo; *hi; }; pivot_buffer; int max_thresh = MAX_THRESH; if (total_elems > MAX_THRESH) { *lo = base_ptr; *hi = lo + (total_elems - 1); *left_ptr; *right_ptr; stack_node stack[STACK_SIZE]; /* Largest size needed for 32-bit int!!! */ stack_node *top = stack + 1; while (STACK_NOT_EMPTY) { { *pivot = &pivot_buffer; { /* Select median value from among LO, MID, and HI. Rearrange LO and HI so the three values are sorted. This lowers the probability of picking a pathological pivot value and skips a comparison for both the LEFT_PTR and RIGHT_PTR. */ *mid = lo + ((hi - lo) >> 1); if ((*cmp) (*mid, *lo) < 0) SWAP (mid, lo); if ((*cmp) (*hi, *mid) < 0) { SWAP (mid, hi); if ((*cmp) (*mid, *lo) < 0) SWAP (mid, lo); } *pivot = *mid; pivot = &pivot_buffer; } left_ptr = lo + 1; right_ptr = hi - 1; /* Here's the famous ``collapse the walls'' section of quicksort. Gotta like those tight inner loops! They are the main reason that this algorithm runs much faster than others. */ do { while ((*cmp) (*left_ptr, *pivot) < 0) left_ptr += 1; while ((*cmp) (*pivot, *right_ptr) < 0) right_ptr -= 1; if (left_ptr < right_ptr) { SWAP (left_ptr, right_ptr); left_ptr += 1; right_ptr -= 1; } else if (left_ptr == right_ptr) { left_ptr += 1; right_ptr -= 1; break; } } while (left_ptr <= right_ptr); } /* Set up pointers for next iteration. First determine whether left and right partitions are below the threshold size. If so, ignore one or both. Otherwise, push the larger partition's bounds on the stack and continue sorting the smaller one. */ if ((right_ptr - lo) <= max_thresh) { if ((hi - left_ptr) <= max_thresh) /* Ignore both small partitions. */ POP (lo, hi); else /* Ignore small left partition. */ lo = left_ptr; } else if ((hi - left_ptr) <= max_thresh) /* Ignore small right partition. */ hi = right_ptr; else if ((right_ptr - lo) > (hi - left_ptr)) /* Push larger left partition indices. */ { PUSH (lo, right_ptr); lo = left_ptr; } else /* Push larger right partition indices. */ { PUSH (left_ptr, hi); hi = right_ptr; } } } /* Once the BASE_PTR array is partially sorted by quicksort the rest is completely sorted using insertion sort, since this is efficient for partitions below MAX_THRESH size. BASE_PTR points to the beginning of the array to sort, and END_PTR points at the very last element in the array (*not* one beyond it!). */ { *end_ptr = base_ptr + 1 * (total_elems - 1); *run_ptr; *tmp_ptr = base_ptr; *thresh = (end_ptr < (base_ptr + max_thresh))? end_ptr : (base_ptr + max_thresh); /* Find smallest element in first threshold and place it at the array's beginning. This is the smallest array element, and the operation speeds up insertion sort's inner loop. */ for (run_ptr = tmp_ptr + 1; run_ptr <= thresh; run_ptr += 1) if ((*cmp) (*run_ptr, *tmp_ptr) < 0) tmp_ptr = run_ptr; if (tmp_ptr != base_ptr) SWAP (tmp_ptr, base_ptr); /* Insertion sort, running from left-hand-side up to `right-hand-side.' Pretty much straight out of the original GNU qsort routine. */ for (run_ptr = base_ptr + 1; (tmp_ptr = run_ptr += 1) <= end_ptr; ) { while ((*cmp) (*run_ptr, *(tmp_ptr -= 1)) < 0) ; if ((tmp_ptr += 1) != run_ptr) { *trav; for (trav = run_ptr + 1; --trav >= run_ptr;) { c = *trav; *hi, *lo; for (hi = lo = trav; (lo -= 1) >= tmp_ptr; hi = lo) *hi = *lo; *hi = c; } } } } return 1; }