/* * linux/kernel/floppy.c * * Copyright (C) 1991, 1992 Linus Torvalds * Copyright (C) 1993, 1994 Alain Knaff */ /* * 02.12.91 - Changed to static variables to indicate need for reset * and recalibrate. This makes some things easier (output_byte reset * checking etc), and means less interrupt jumping in case of errors, * so the code is hopefully easier to understand. */ /* * This file is certainly a mess. I've tried my best to get it working, * but I don't like programming floppies, and I have only one anyway. * Urgel. I should check for more errors, and do more graceful error * recovery. Seems there are problems with several drives. I've tried to * correct them. No promises. */ /* * As with hd.c, all routines within this file can (and will) be called * by interrupts, so extreme caution is needed. A hardware interrupt * handler may not sleep, or a kernel panic will happen. Thus I cannot * call "floppy-on" directly, but have to set a special timer interrupt * etc. */ /* * 28.02.92 - made track-buffering routines, based on the routines written * by entropy@wintermute.wpi.edu (Lawrence Foard). Linus. */ /* * Automatic floppy-detection and formatting written by Werner Almesberger * (almesber@nessie.cs.id.ethz.ch), who also corrected some problems with * the floppy-change signal detection. */ /* * 1992/7/22 -- Hennus Bergman: Added better error reporting, fixed * FDC data overrun bug, added some preliminary stuff for vertical * recording support. * * 1992/9/17: Added DMA allocation & DMA functions. -- hhb. * * TODO: Errors are still not counted properly. */ /* 1992/9/20 * Modifications for ``Sector Shifting'' by Rob Hooft (hooft@chem.ruu.nl) * modelled after the freeware MS/DOS program fdformat/88 V1.8 by * Christoph H. Hochst\"atter. * I have fixed the shift values to the ones I always use. Maybe a new * ioctl() should be created to be able to modify them. * There is a bug in the driver that makes it impossible to format a * floppy as the first thing after bootup. */ /* * 1993/4/29 -- Linus -- cleaned up the timer handling in the kernel, and * this helped the floppy driver as well. Much cleaner, and still seems to * work. */ /* 1994/6/24 --bbroad-- added the floppy table entries and made * minor modifications to allow 2.88 floppies to be run. */ /* 1994/7/13 -- Paul Vojta -- modified the probing code to allow three or more * disk types. */ /* * 1994/8/8 -- Alain Knaff -- Switched to fdpatch driver: Support for bigger * format bug fixes, but unfortunately some new bugs too... */ /* 1994/9/17 -- Koen Holtman -- added logging of physical floppy write * errors to allow safe writing by specialized programs. */ #define CONFIG_FLOPPY_SANITY #undef CONFIG_FLOPPY_SILENT_DCL_CLEAR #define REALLY_SLOW_IO #define DEBUGT 2 #define DCL_DEBUG /* debug disk change line */ #include /* do print messages for unexpected interrupts */ static int print_unex=1; #ifndef FD_MODULE /* the following is the mask of allowed drives. By default units 2 and * 3 of both floppy controllers are disabled, because switching on the * motor of these drives causes system hangs on some PCI computers. drive * 0 is the low bit (0x1), and drive 7 is the high bit (0x80). Bits are on if * a drive is allowed. */ static int ALLOWED_DRIVE_MASK=0x33; #define FLOPPY_IRQ 6 #define FLOPPY_DMA 2 #define FDC1 0x3f0 static int FDC2=-1; #endif #define MODULE_AWARE_DRIVER #include #include #include #include #include #define FDPATCHES #include #include #include #include #include #include #include #include /* CMOS defines */ #include #include #include #include #include #define MAJOR_NR FLOPPY_MAJOR #include "blk.h" static unsigned int fake_change = 0; static int initialising=1; #define FLOPPY0_TYPE ((CMOS_READ(0x10) >> 4) & 15) #define FLOPPY1_TYPE (CMOS_READ(0x10) & 15) /* * Again, the CMOS information doesn't work on the alpha.. */ #ifdef __alpha__ #undef FLOPPY0_TYPE #undef FLOPPY1_TYPE #define FLOPPY0_TYPE 6 #define FLOPPY1_TYPE 0 #endif #define N_FDC 2 #define N_DRIVE 8 #define TYPE(x) ( ((x)>>2) & 0x1f ) #define DRIVE(x) ( ((x)&0x03) | (((x)&0x80 ) >> 5)) #define UNIT(x) ( (x) & 0x03 ) /* drive on fdc */ #define FDC(x) ( ((x) & 0x04) >> 2 ) /* fdc of drive */ #define REVDRIVE(fdc, unit) ( (unit) + ((fdc) << 2 )) /* reverse mapping from unit and fdc to drive */ #define DP (&drive_params[current_drive]) #define DRS (&drive_state[current_drive]) #define DRWE (&write_errors[current_drive]) #define FDCS (&fdc_state[fdc]) #define CLEARF(x) (clear_bit(x##_BIT, &DRS->flags)) #define SETF(x) (set_bit(x##_BIT, &DRS->flags)) #define TESTF(x) (test_bit(x##_BIT, &DRS->flags)) #define UDP (&drive_params[drive]) #define UDRS (&drive_state[drive]) #define UDRWE (&write_errors[drive]) #define UFDCS (&fdc_state[FDC(drive)]) #define UCLEARF(x) (clear_bit(x##_BIT, &UDRS->flags)) #define USETF(x) (set_bit(x##_BIT, &UDRS->flags)) #define UTESTF(x) (test_bit(x##_BIT, &UDRS->flags)) #define DPRINT(x) printk(DEVICE_NAME "%d: " x,current_drive) #define DPRINT1(x,x1) \ printk(DEVICE_NAME "%d: " x,current_drive,(x1)) #define DPRINT2(x,x1,x2) \ printk(DEVICE_NAME "%d: " x,current_drive,(x1),(x2)) #define DPRINT3(x,x1,x2,x3) \ printk(DEVICE_NAME "%d: " x,current_drive,(x1),(x2),(x3)) /* read/write */ #define COMMAND raw_cmd.cmd[0] #define DR_SELECT raw_cmd.cmd[1] #define TRACK raw_cmd.cmd[2] #define HEAD raw_cmd.cmd[3] #define SECTOR raw_cmd.cmd[4] #define SIZECODE raw_cmd.cmd[5] #define SECT_PER_TRACK raw_cmd.cmd[6] #define GAP raw_cmd.cmd[7] #define SIZECODE2 raw_cmd.cmd[8] #define NR_RW 9 /* format */ #define F_SIZECODE raw_cmd.cmd[2] #define F_SECT_PER_TRACK raw_cmd.cmd[3] #define F_GAP raw_cmd.cmd[4] #define F_FILL raw_cmd.cmd[5] #define NR_F 6 /* * Maximum disk size (in kilobytes). This default is used whenever the * current disk size is unknown. * [Now it is rather a minimum] */ #define MAX_DISK_SIZE 2 /* 3984*/ /* * The DMA channel used by the floppy controller cannot access data at * addresses >= 16MB * * Went back to the 1MB limit, as some people had problems with the floppy * driver otherwise. It doesn't matter much for performance anyway, as most * floppy accesses go through the track buffer. */ #define LAST_DMA_ADDR (0x1000000) #define K_64 (0x10000) /* 64 k */ /* * globals used by 'result()' */ #define MAX_REPLIES 10 static unsigned char reply_buffer[MAX_REPLIES]; static int inr; /* size of reply buffer, when called from interrupt */ #define ST0 (reply_buffer[0]) #define ST1 (reply_buffer[1]) #define ST2 (reply_buffer[2]) #define ST3 (reply_buffer[0]) /* result of GETSTATUS */ #define R_TRACK (reply_buffer[3]) #define R_HEAD (reply_buffer[4]) #define R_SECTOR (reply_buffer[5]) #define R_SIZECODE (reply_buffer[6]) #define SEL_DLY (2*HZ/100) #define ARRAY_SIZE(x) (sizeof(x) / sizeof( (x)[0] )) /* * this struct defines the different floppy drive types. */ static struct { struct floppy_drive_params params; char *name; /* name printed while booting */ } default_drive_params[]= { /* NOTE: the time values in jiffies should be in msec! CMOS drive type | Maximum data rate supported by drive type | | Head load time, msec | | | Head unload time, msec (not used) | | | | Step rate interval, usec | | | | | Time needed for spinup time (jiffies) | | | | | | Timeout for spinning down (jiffies) | | | | | | | Spindown offset (where disk stops) | | | | | | | | Select delay | | | | | | | | | RPS | | | | | | | | | | Max number of tracks | | | | | | | | | | | Interrupt timeout | | | | | | | | | | | | Max nonintlv. sectors | | | | | | | | | | | | | -Max Errors- flags */ {{0, 500, 16, 16, 8000, 1*HZ, 3*HZ, 0, SEL_DLY, 5, 80, 3*HZ, 20, {3,1,2,0,2}, 0, 0, { 7, 4, 8, 2, 1, 5, 3,10}, 3*HZ/2, 0 }, "unknown" }, {{1, 300, 16, 16, 8000, 1*HZ, 3*HZ, 0, SEL_DLY, 5, 40, 3*HZ, 17, {3,1,2,0,2}, 0, 0, { 1, 0, 0, 0, 0, 0, 0, 0}, 3*HZ/2, 1 }, "360K PC" }, /*5 1/4 360 KB PC*/ {{2, 500, 16, 16, 6000, 4*HZ/10, 3*HZ, 14, SEL_DLY, 6, 83, 3*HZ, 17, {3,1,2,0,2}, 0, 0, { 2, 5, 6,23,10,20,11, 0}, 3*HZ/2, 2 }, "1.2M" }, /*5 1/4 HD AT*/ {{3, 250, 16, 16, 3000, 1*HZ, 3*HZ, 0, SEL_DLY, 5, 83, 3*HZ, 20, {3,1,2,0,2}, 0, 0, { 4,22,21,30, 3, 0, 0, 0}, 3*HZ/2, 4 }, "720k" }, /*3 1/2 DD*/ {{4, 500, 16, 16, 4000, 4*HZ/10, 3*HZ, 10, SEL_DLY, 5, 83, 3*HZ, 20, {3,1,2,0,2}, 0, 0, { 7, 4,25,22,31,21,29,11}, 3*HZ/2, 7 }, "1.44M" }, /*3 1/2 HD*/ {{5, 1000, 15, 8, 3000, 4*HZ/10, 3*HZ, 10, SEL_DLY, 5, 83, 3*HZ, 40, {3,1,2,0,2}, 0, 0, { 7, 8, 4,25,28,22,31,21}, 3*HZ/2, 8 }, "2.88M AMI BIOS" }, /*3 1/2 ED*/ {{6, 1000, 15, 8, 3000, 4*HZ/10, 3*HZ, 10, SEL_DLY, 5, 83, 3*HZ, 40, {3,1,2,0,2}, 0, 0, { 7, 8, 4,25,28,22,31,21}, 3*HZ/2, 8 }, "2.88M" } /*3 1/2 ED*/ /* | ---autodetected formats-- | | | read_track | | Name printed when booting | Native format Frequency of disk change checks */ }; static struct floppy_drive_params drive_params[N_DRIVE]; static struct floppy_drive_struct drive_state[N_DRIVE]; static struct floppy_write_errors write_errors[N_DRIVE]; static struct floppy_raw_cmd raw_cmd; /* * This struct defines the different floppy types. * * The 'stretch' tells if the tracks need to be doubled for some * types (ie 360kB diskette in 1.2MB drive etc). Others should * be self-explanatory. */ static struct floppy_struct floppy_type[32] = { { 0, 0,0, 0,0,0x00,0x00,0x00,0x00,NULL }, /* 0 no testing */ { 720, 9,2,40,0,0x2A,0x02,0xDF,0x50,"d360" }, /* 1 360KB PC */ { 2400,15,2,80,0,0x1B,0x00,0xDF,0x54,"h1200" }, /* 2 1.2MB AT */ { 720, 9,1,80,0,0x2A,0x02,0xDF,0x50,"D360" }, /* 3 360KB SS 3.5" */ { 1440, 9,2,80,0,0x2A,0x02,0xDF,0x50,"D720" }, /* 4 720KB 3.5" */ { 720, 9,2,40,1,0x23,0x01,0xDF,0x50,"h360" }, /* 5 360KB AT */ { 1440, 9,2,80,0,0x23,0x01,0xDF,0x50,"h720" }, /* 6 720KB AT */ { 2880,18,2,80,0,0x1B,0x00,0xCF,0x6C,"H1440" }, /* 7 1.44MB 3.5" */ { 5760,36,2,80,0,0x1B,0x43,0xAF,0x54,"E2880" }, /* 8 2.88MB 3.5" */ { 5760,36,2,80,0,0x1B,0x43,0xAF,0x54,"CompaQ"}, /* 9 2.88MB 3.5" */ { 2880,18,2,80,0,0x25,0x00,0xDF,0x02,"h1440" }, /* 10 1.44MB 5.25" */ { 3360,21,2,80,0,0x1C,0x00,0xCF,0x0C,"H1680" }, /* 11 1.68MB 3.5" */ { 820,10,2,41,1,0x25,0x01,0xDF,0x2E,"h410" }, /* 12 410KB 5.25" */ { 1640,10,2,82,0,0x25,0x02,0xDF,0x2E,"H820" }, /* 13 820KB 3.5" */ { 2952,18,2,82,0,0x25,0x00,0xDF,0x02,"h1476" }, /* 14 1.48MB 5.25" */ { 3444,21,2,82,0,0x25,0x00,0xDF,0x0C,"H1722" }, /* 15 1.72MB 3.5" */ { 840,10,2,42,1,0x25,0x01,0xDF,0x2E,"h420" }, /* 16 420KB 5.25" */ { 1660,10,2,83,0,0x25,0x02,0xDF,0x2E,"H830" }, /* 17 830KB 3.5" */ { 2988,18,2,83,0,0x25,0x00,0xDF,0x02,"h1494" }, /* 18 1.49MB 5.25" */ { 3486,21,2,83,0,0x25,0x00,0xDF,0x0C,"H1743" }, /* 19 1.74 MB 3.5" */ { 1760,11,2,80,0,0x1C,0x09,0xCF,0x00,"h880" }, /* 20 880KB 5.25" */ { 2080,13,2,80,0,0x1C,0x01,0xCF,0x00,"D1040" }, /* 21 1.04MB 3.5" */ { 2240,14,2,80,0,0x1C,0x19,0xCF,0x00,"D1120" }, /* 22 1.12MB 3.5" */ { 3200,20,2,80,0,0x1C,0x20,0xCF,0x2C,"h1600" }, /* 23 1.6MB 5.25" */ { 3520,22,2,80,0,0x1C,0x08,0xCF,0x2e,"H1760" }, /* 24 1.76MB 3.5" */ { 3840,24,2,80,0,0x1C,0x20,0xCF,0x00,"H1920" }, /* 25 1.92MB 3.5" */ { 6400,40,2,80,0,0x25,0x5B,0xCF,0x00,"E3200" }, /* 26 3.20MB 3.5" */ { 7040,44,2,80,0,0x25,0x5B,0xCF,0x00,"E3520" }, /* 27 3.52MB 3.5" */ { 7680,48,2,80,0,0x25,0x63,0xCF,0x00,"E3840" }, /* 28 3.84MB 3.5" */ { 3680,23,2,80,0,0x1C,0x10,0xCF,0x00,"H1840" }, /* 29 1.84MB 3.5" */ { 1600,10,2,80,0,0x25,0x02,0xDF,0x2E,"D800" }, /* 30 800KB 3.5" */ { 3200,20,2,80,0,0x1C,0x00,0xCF,0x2C,"H1600" }, /* 31 1.6MB 3.5" */ }; #define NUMBER(x) (sizeof(x) / sizeof(*(x))) #define SECTSIZE ( _FD_SECTSIZE(*floppy)) /* Auto-detection: Disk type used until the next media change occurs. */ struct floppy_struct *current_type[N_DRIVE] = { NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL }; /* * User-provided type information. current_type points to * the respective entry of this array. */ struct floppy_struct user_params[N_DRIVE]; static int floppy_sizes[256]; static int floppy_blocksizes[256] = { 0, }; /* * The driver is trying to determine the correct media format * while probing is set. rw_interrupt() clears it after a * successful access. */ static int probing = 0; /* Synchronization of FDC access. */ #define FD_COMMAND_DETECT -2 #define FD_COMMAND_NONE -1 #define FD_COMMAND_ERROR 2 #define FD_COMMAND_OKAY 3 static volatile int command_status = FD_COMMAND_NONE, fdc_busy = 0; static struct wait_queue *fdc_wait = NULL, *command_done = NULL; #define NO_SIGNAL (!(current->signal & ~current->blocked) || !interruptible) #define CALL(x) if( (x) == -EINTR) return -EINTR; #define _WAIT(x,i) CALL(ret=wait_til_done((x),i)) #define WAIT(x) _WAIT((x),interruptible) #define IWAIT(x) _WAIT((x),1) /* Errors during formatting are counted here. */ static int format_errors; /* Format request descriptor. */ static struct format_descr format_req; /* * Rate is 0 for 500kb/s, 1 for 300kbps, 2 for 250kbps * Spec1 is 0xSH, where S is stepping rate (F=1ms, E=2ms, D=3ms etc), * H is head unload time (1=16ms, 2=32ms, etc) */ /* * Track buffer * Because these are written to by the DMA controller, they must * not contain a 64k byte boundary crossing, or data will be * corrupted/lost. Alignment of these is enforced in boot/head.S. * Note that you must not change the sizes below without updating head.S. */ extern char floppy_track_buffer[512*2*MAX_BUFFER_SECTORS]; #define max_buffer_sectors MAX_BUFFER_SECTORS int *errors; typedef void (*done_f)(int); struct cont_t { void (*interrupt)(void); /* this is called after the interrupt of the * main command */ void (*redo)(void); /* this is called to retry the operation */ void (*error)(void); /* this is called to tally an error */ done_f done; /* this is called to say if the operation has succeeded/failed */ } *cont; static void floppy_ready(void); static void floppy_start(void); static void process_fd_request(void); static void recalibrate_floppy(void); static void floppy_shutdown(void); static int floppy_grab_irq_and_dma(void); static void floppy_release_irq_and_dma(void); /* * The "reset" variable should be tested whenever an interrupt is scheduled, * after the commands have been sent. This is to ensure that the driver doesn't * get wedged when the interrupt doesn't come because of a failed command. * reset doesn't need to be tested before sending commands, because * output_byte is automatically disabled when reset is set. */ #define CHECK_RESET { if ( FDCS->reset ){ reset_fdc(); return ; } } static void reset_fdc(void); /* * These are global variables, as that's the easiest way to give * information to interrupts. They are the data used for the current * request. */ #define NO_TRACK -1 #define NEED_1_RECAL -2 #define NEED_2_RECAL -3 /* */ static int usage_count = 0; /* buffer related variables */ static int buffer_track = -1; static int buffer_drive = -1; static int buffer_min = -1; static int buffer_max = -1; /* fdc related variables, should end up in a struct */ static struct floppy_fdc_state fdc_state[N_FDC]; static int fdc; /* current fdc */ static struct floppy_struct * floppy = floppy_type; static unsigned char current_drive = 0; static long current_count_sectors = 0; static char *current_addr = 0; static unsigned char sector_t; /* sector in track */ #ifdef DEBUGT long unsigned debugtimer; #endif /* * Debugging * ========= */ static inline void set_debugt(void) { #ifdef DEBUGT debugtimer = jiffies; #endif } static inline void debugt(char *message) { #ifdef DEBUGT if ( DP->flags & DEBUGT ) printk("%s dtime=%lu\n", message, jiffies-debugtimer ); #endif } /* * Bottom half floppy driver. * ========================== * * This part of the file contains the code talking directly to the hardware, * and also the main service loop (seek-configure-spinup-command) */ /* * disk change. * This routine is responsible for maintaining the FD_DISK_CHANGE flag, * and the last_checked date. * * last_checked is the date of the last check which showed 'no disk change' * FD_DISK_CHANGE is set under two conditions: * 1. The floppy has been changed after some i/o to that floppy already * took place. * 2. No floppy disk is in the drive. This is done in order to ensure that * requests are quickly flushed in case there is no disk in the drive. It * follows that FD_DISK_CHANGE can only be cleared if there is a disk in * the drive. * * For 1., maxblock is observed. Maxblock is 0 if no i/o has taken place yet. * For 2., FD_DISK_NEWCHANGE is watched. FD_DISK_NEWCHANGE is cleared on * each seek. If a disk is present, the disk change line should also be * cleared on each seek. Thus, if FD_DISK_NEWCHANGE is clear, but the disk * change line is set, this means either that no disk is in the drive, or * that it has been removed since the last seek. * * This means that we really have a third possibility too: * The floppy has been changed after the last seek. */ static int disk_change(int drive) { int fdc=FDC(drive); #ifdef CONFIG_FLOPPY_SANITY if(jiffies < UDP->select_delay + UDRS->select_date) DPRINT("WARNING disk change called early\n"); if(! (FDCS->dor & (0x10 << UNIT(drive))) || (FDCS->dor & 3) != UNIT(drive) || fdc != FDC(drive)){ DPRINT("probing disk change on unselected drive\n"); DPRINT3("drive=%d fdc=%d dor=%x\n",drive, FDC(drive), FDCS->dor); } #endif #ifdef DCL_DEBUG if (UDP->flags & FD_DEBUG){ DPRINT1("checking disk change line for drive %d\n",drive); DPRINT1("jiffies=%ld\n", jiffies); DPRINT1("disk change line=%x\n",inb_p(FD_DIR)&0x80); DPRINT1("flags=%x\n",UDRS->flags); } #endif if (UDP->flags & FD_BROKEN_DCL) return UTESTF(FD_DISK_CHANGED); if( (inb_p(FD_DIR) ^ UDP->flags) & 0x80){ USETF(FD_VERIFY); /* verify write protection */ if(UDRS->maxblock){ /* mark it changed */ USETF(FD_DISK_CHANGED); /* invalidate its geometry */ if (UDRS->keep_data >= 0) { if ((UDP->flags & FTD_MSG) && current_type[drive] != NULL) DPRINT("Disk type is undefined after " "disk change\n"); current_type[drive] = NULL; floppy_sizes[DRIVE(current_drive) + (FDC(current_drive) << 7)] = MAX_DISK_SIZE; } } /*USETF(FD_DISK_NEWCHANGE);*/ return 1; } else { UDRS->last_checked=jiffies; UCLEARF(FD_DISK_NEWCHANGE); } return 0; } static inline int is_selected(int dor, int unit) { return ( (dor & (0x10 << unit)) && (dor &3) == unit); } static int set_dor(int fdc, char mask, char data) { register unsigned char drive, unit, newdor,olddor; if(FDCS->address == -1) return -1; olddor = FDCS->dor; newdor = (olddor & mask) | data; if ( newdor != olddor ){ unit = olddor & 0x3; if(is_selected(olddor, unit) && !is_selected(newdor,unit)){ drive = REVDRIVE(fdc,unit); #ifdef DCL_DEBUG if (UDP->flags & FD_DEBUG){ DPRINT("calling disk change from set_dor\n"); } #endif disk_change(drive); } FDCS->dor = newdor; outb_p(newdor, FD_DOR); unit = newdor & 0x3; if(!is_selected(olddor, unit) && is_selected(newdor,unit)){ drive = REVDRIVE(fdc,unit); UDRS->select_date = jiffies; } } if ( newdor & 0xf0 ) floppy_grab_irq_and_dma(); if( olddor & 0xf0 ) floppy_release_irq_and_dma(); return olddor; } static void twaddle(void) { if (DP->select_delay) return; outb_p(FDCS->dor & ~(0x10<dor, FD_DOR); DRS->select_date = jiffies; } /* reset all driver information about the current fdc. This is needed after * a reset, and after a raw command. */ static void reset_fdc_info(int mode) { int drive; FDCS->spec1 = FDCS->spec2 = -1; FDCS->need_configure = 1; FDCS->perp_mode = 1; FDCS->rawcmd = 0; for ( drive = 0; drive < N_DRIVE; drive++) if (FDC(drive) == fdc && ( mode || UDRS->track != NEED_1_RECAL)) UDRS->track = NEED_2_RECAL; } /* selects the fdc and drive, and enables the fdc's input/dma. */ static void set_fdc(int drive) { if (drive >= 0 && drive < N_DRIVE){ fdc = FDC(drive); current_drive = drive; } set_dor(fdc,~0,8); set_dor(1-fdc, ~8, 0); if ( FDCS->rawcmd == 2 ) reset_fdc_info(1); if( inb_p(FD_STATUS) != STATUS_READY ) FDCS->reset = 1; } /* locks the driver */ static int lock_fdc(int drive, int interruptible) { if(!usage_count){ printk("trying to lock fdc while usage count=0\n"); return -1; } floppy_grab_irq_and_dma(); if (!current->pid) run_task_queue(&tq_timer); cli(); while (fdc_busy && NO_SIGNAL) interruptible_sleep_on(&fdc_wait); if(fdc_busy){ sti(); return -EINTR; } fdc_busy = 1; sti(); command_status = FD_COMMAND_NONE; set_fdc(drive); return 0; } #define LOCK_FDC(drive,interruptible) \ if(lock_fdc(drive,interruptible)) return -EINTR; typedef void (*timeout_fn)(unsigned long); static struct timer_list fd_timeout ={ NULL, NULL, 0, 0, (timeout_fn) floppy_shutdown }; /* unlocks the driver */ static inline void unlock_fdc(void) { if (!fdc_busy) DPRINT("FDC access conflict!\n"); if ( DEVICE_INTR ) DPRINT1("device interrupt still active at FDC release: %p!\n", DEVICE_INTR); command_status = FD_COMMAND_NONE; del_timer(&fd_timeout); fdc_busy = 0; floppy_release_irq_and_dma(); wake_up(&fdc_wait); } /* switches the motor off after a given timeout */ static void motor_off_callback(unsigned long nr) { unsigned char mask = ~(0x10 << UNIT(nr)); set_dor( FDC(nr), mask, 0 ); } static struct timer_list motor_off_timer[N_DRIVE] = { { NULL, NULL, 0, 0, motor_off_callback }, { NULL, NULL, 0, 1, motor_off_callback }, { NULL, NULL, 0, 2, motor_off_callback }, { NULL, NULL, 0, 3, motor_off_callback }, { NULL, NULL, 0, 4, motor_off_callback }, { NULL, NULL, 0, 5, motor_off_callback }, { NULL, NULL, 0, 6, motor_off_callback }, { NULL, NULL, 0, 7, motor_off_callback } }; /* schedules motor off */ static void floppy_off(unsigned int drive) { unsigned long volatile delta; register int fdc=FDC(drive); if( !(FDCS->dor & ( 0x10 << UNIT(drive)))) return; del_timer(motor_off_timer+drive); /* make spindle stop in a position which minimizes spinup time * next time */ if (UDP->rps ){ delta = jiffies - UDRS->first_read_date + HZ - UDP->spindown_offset; delta = (( delta * UDP->rps) % HZ ) / UDP->rps; motor_off_timer[drive].expires = UDP->spindown - delta; } add_timer(motor_off_timer+drive); } /* * cycle through all N_DRIVE floppy drives, for disk change testing. * stopping at current drive. This is done before any long operation, to * be sure to have up to date disk change information. */ static void scandrives(void) { int i, drive, saved_drive; if (DP->select_delay) return; saved_drive = current_drive; for(i=0; i< N_DRIVE; i++){ drive = (saved_drive + i + 1 ) % N_DRIVE; if ( UDRS->fd_ref == 0 || UDP->select_delay != 0) continue; /* skip closed drives */ set_fdc(drive); if(! (set_dor( fdc, ~3, UNIT(drive) | ( 0x10 << UNIT(drive))) & (0x10 << UNIT(drive)))) /* switch the motor off again, if it was off to * begin with */ set_dor( fdc, ~( 0x10 << UNIT(drive) ), 0 ); } set_fdc(saved_drive); } static struct timer_list fd_timer ={ NULL, NULL, 0, 0, 0 }; /* this function makes sure that the disk stays in the drive during the * transfer */ static void fd_watchdog(void) { #ifdef DCL_DEBUG if (DP->flags & FD_DEBUG){ DPRINT("calling disk change from watchdog\n"); } #endif if ( disk_change(current_drive) ){ DPRINT("disk removed during i/o\n"); floppy_shutdown(); } else { del_timer(&fd_timer); fd_timer.function = (timeout_fn) fd_watchdog; fd_timer.expires = 10; add_timer(&fd_timer); } } static void main_command_interrupt(void) { del_timer(&fd_timer); cont->interrupt(); } /* waits for a delay (spinup or select) to pass */ static int wait_for_completion(int delay, timeout_fn function) { if ( FDCS->reset ){ reset_fdc(); /* do the reset during sleep to win time * if we don't need to sleep, it's a good * occasion anyways */ return 1; } if ( jiffies < delay ){ del_timer(&fd_timer); fd_timer.function = function; fd_timer.expires = delay - jiffies; add_timer(&fd_timer); return 1; } return 0; } static int hlt_disabled=0; static void floppy_disable_hlt(void) { unsigned long flags; save_flags(flags); cli(); if(!hlt_disabled){ hlt_disabled=1; #ifdef HAVE_DISABLE_HLT disable_hlt(); #endif } restore_flags(flags); } static void floppy_enable_hlt(void) { unsigned long flags; save_flags(flags); cli(); if(hlt_disabled){ hlt_disabled=0; #ifdef HAVE_DISABLE_HLT enable_hlt(); #endif } restore_flags(flags); } static void setup_DMA(void) { #ifdef CONFIG_FLOPPY_SANITY if (raw_cmd.length == 0){ int i; printk("zero dma transfer size:"); for(i=0; i< raw_cmd.cmd_count; i++) printk("%x,", raw_cmd.cmd[i]); printk("\n"); cont->done(0); FDCS->reset = 1; return; } if ((!CURRENT || CURRENT->buffer != current_addr || raw_cmd.length > 512 * CURRENT->nr_sectors) && (current_addr < floppy_track_buffer || current_addr + raw_cmd.length > floppy_track_buffer + 1024 * max_buffer_sectors)){ printk("bad address. start=%p lg=%lx tb=%p\n", current_addr, raw_cmd.length, floppy_track_buffer); if ( CURRENT ){ printk("buffer=%p nr=%lx cnr=%lx\n", CURRENT->buffer, CURRENT->nr_sectors, CURRENT->current_nr_sectors); } cont->done(0); FDCS->reset=1; return; } if ((long) current_addr % 512 ){ printk("non aligned address: %p\n", current_addr ); cont->done(0); FDCS->reset=1; return; } if ( ( (long)current_addr & ~(64*1024-1) ) != ((long)(current_addr + raw_cmd.length-1) & ~(64*1024-1))){ printk("DMA crossing 64-K boundary %p-%p\n", current_addr, current_addr + raw_cmd.length); cont->done(0); FDCS->reset=1; return; } #endif cli(); disable_dma(FLOPPY_DMA); clear_dma_ff(FLOPPY_DMA); set_dma_mode(FLOPPY_DMA, (raw_cmd.flags & FD_RAW_READ)? DMA_MODE_READ : DMA_MODE_WRITE); set_dma_addr(FLOPPY_DMA, (long) current_addr); set_dma_count(FLOPPY_DMA, raw_cmd.length); enable_dma(FLOPPY_DMA); sti(); floppy_disable_hlt(); } /* sends a command byte to the fdc */ static int output_byte(char byte) { int counter; unsigned char status; if (FDCS->reset) return -1; for(counter = 0 ; counter < 10000 && !FDCS->reset ; counter++) { status = inb_p(FD_STATUS) &(STATUS_READY|STATUS_DIR|STATUS_DMA); if (!(status & STATUS_READY)) continue; if (status == STATUS_READY){ outb_p(byte,FD_DATA); return 0; } else break; } FDCS->reset = 1; if ( !initialising ) DPRINT2("Unable to send byte %x to FDC. Status=%x\n", byte, status); return -1; } #define LAST_OUT(x) if(output_byte(x)){ reset_fdc();return;} /* gets the response from the fdc */ static int result(void) { int i = 0, counter, status; if (FDCS->reset) return -1; for (counter = 0 ; counter < 10000 && !FDCS->reset ; counter++) { status = inb_p(FD_STATUS)& (STATUS_DIR|STATUS_READY|STATUS_BUSY|STATUS_DMA); if (!(status & STATUS_READY)) continue; if (status == STATUS_READY) return i; if (status & STATUS_DMA ) break; if (status == (STATUS_DIR|STATUS_READY|STATUS_BUSY)) { if (i >= MAX_REPLIES) { DPRINT("floppy_stat reply overrun\n"); break; } reply_buffer[i++] = inb_p(FD_DATA); } } FDCS->reset = 1; if ( !initialising ) DPRINT3("Getstatus times out (%x) on fdc %d [%d]\n", status, fdc, i); return -1; } /* Set perpendicular mode as required, based on data rate, if supported. * 82077 Now tested. 1Mbps data rate only possible with 82077-1. */ static inline void perpendicular_mode(void) { unsigned char perp_mode; if (!floppy) return; if (floppy->rate & 0x40){ switch(raw_cmd.rate){ case 0: perp_mode=2; break; case 3: perp_mode=3; break; default: DPRINT("Invalid data rate for perpendicular mode!\n"); cont->done(0); FDCS->reset = 1; /* convenient way to return to * redo without to much hassle (deep * stack et al. */ return; } } else perp_mode = 0; if ( FDCS->perp_mode == perp_mode ) return; if (FDCS->version >= FDC_82077_ORIG && FDCS->has_fifo) { output_byte(FD_PERPENDICULAR); output_byte(perp_mode); FDCS->perp_mode = perp_mode; } else if (perp_mode) { DPRINT("perpendicular mode not supported by this FDC.\n"); } } /* perpendicular_mode */ #define NOMINAL_DTR 500 /* Issue a "SPECIFY" command to set the step rate time, head unload time, * head load time, and DMA disable flag to values needed by floppy. * * The value "dtr" is the data transfer rate in Kbps. It is needed * to account for the data rate-based scaling done by the 82072 and 82077 * FDC types. This parameter is ignored for other types of FDCs (i.e. * 8272a). * * Note that changing the data transfer rate has a (probably deleterious) * effect on the parameters subject to scaling for 82072/82077 FDCs, so * fdc_specify is called again after each data transfer rate * change. * * srt: 1000 to 16000 in microseconds * hut: 16 to 240 milliseconds * hlt: 2 to 254 milliseconds * * These values are rounded up to the next highest available delay time. */ static void fdc_specify(void) { unsigned char spec1, spec2; int srt, hlt, hut; unsigned long dtr = NOMINAL_DTR; unsigned long scale_dtr = NOMINAL_DTR; int hlt_max_code = 0x7f; int hut_max_code = 0xf; if (FDCS->need_configure && FDCS->has_fifo) { if ( FDCS->reset ) return; /* Turn on FIFO for 82077-class FDC (improves performance) */ /* TODO: lock this in via LOCK during initialization */ output_byte(FD_CONFIGURE); output_byte(0); output_byte(0x2A); /* FIFO on, polling off, 10 byte threshold */ output_byte(0); /* precompensation from track 0 upwards */ if ( FDCS->reset ){ FDCS->has_fifo=0; return; } FDCS->need_configure = 0; /*DPRINT("FIFO enabled\n");*/ } switch (raw_cmd.rate & 0x03) { case 3: dtr = 1000; break; case 1: dtr = 300; break; case 2: dtr = 250; break; } if (FDCS->version >= FDC_82072) { scale_dtr = dtr; hlt_max_code = 0x00; /* 0==256msec*dtr0/dtr (not linear!) */ hut_max_code = 0x0; /* 0==256msec*dtr0/dtr (not linear!) */ } /* Convert step rate from microseconds to milliseconds and 4 bits */ srt = 16 - (DP->srt*scale_dtr/1000 + NOMINAL_DTR - 1)/NOMINAL_DTR; if (srt > 0xf) srt = 0xf; else if (srt < 0) srt = 0; hlt = (DP->hlt*scale_dtr/2 + NOMINAL_DTR - 1)/NOMINAL_DTR; if (hlt < 0x01) hlt = 0x01; else if (hlt > 0x7f) hlt = hlt_max_code; hut = (DP->hut*scale_dtr/16 + NOMINAL_DTR - 1)/NOMINAL_DTR; if (hut < 0x1) hut = 0x1; else if (hut > 0xf) hut = hut_max_code; spec1 = (srt << 4) | hut; spec2 = (hlt << 1); /* If these parameters did not change, just return with success */ if (FDCS->spec1 != spec1 || FDCS->spec2 != spec2) { /* Go ahead and set spec1 and spec2 */ output_byte(FD_SPECIFY); output_byte(FDCS->spec1 = spec1); output_byte(FDCS->spec2 = spec2); } } /* fdc_specify */ /* Set the FDC's data transfer rate on behalf of the specified drive. * NOTE: with 82072/82077 FDCs, changing the data rate requires a reissue * of the specify command (i.e. using the fdc_specify function). */ static int fdc_dtr(void) { /* If data rate not already set to desired value, set it. */ if ( raw_cmd.rate == FDCS->dtr) return 0; /* Set dtr */ outb_p(raw_cmd.rate, FD_DCR); /* TODO: some FDC/drive combinations (C&T 82C711 with TEAC 1.2MB) * need a stabilization period of several milliseconds to be * enforced after data rate changes before R/W operations. * Pause 5 msec to avoid trouble. (Needs to be 2 jiffies) */ FDCS->dtr = raw_cmd.rate; return(wait_for_completion(jiffies+2, (timeout_fn) floppy_ready)); } /* fdc_dtr */ static void tell_sector(void) { printk(": track %d, head %d, sector %d, size %d", R_TRACK, R_HEAD, R_SECTOR, R_SIZECODE); } /* tell_sector */ /* * Ok, this error interpreting routine is called after a * DMA read/write has succeeded * or failed, so we check the results, and copy any buffers. * hhb: Added better error reporting. * ak: Made this into a separate routine. */ static int interpret_errors(void) { char bad; if (inr!=7) { DPRINT("-- FDC reply error"); FDCS->reset = 1; return 1; } /* check IC to find cause of interrupt */ switch ((ST0 & ST0_INTR)>>6) { case 1: /* error occurred during command execution */ bad = 1; if (ST1 & ST1_WP) { DPRINT("Drive is write protected\n"); CLEARF(FD_DISK_WRITABLE); cont->done(0); bad = 2; } else if (ST1 & ST1_ND) { SETF(FD_NEED_TWADDLE); } else if (ST1 & ST1_OR) { if (DP->flags & FTD_MSG ) DPRINT("Over/Underrun - retrying\n"); bad = 0; }else if(*errors >= DP->max_errors.reporting){ DPRINT(""); if (ST0 & ST0_ECE) { printk("Recalibrate failed!"); } else if (ST2 & ST2_CRC) { printk("data CRC error"); tell_sector(); } else if (ST1 & ST1_CRC) { printk("CRC error"); tell_sector(); } else if ((ST1 & (ST1_MAM|ST1_ND)) || (ST2 & ST2_MAM)) { if (!probing) { printk("sector not found"); tell_sector(); } else printk("probe failed..."); } else if (ST2 & ST2_WC) { /* seek error */ printk("wrong cylinder"); } else if (ST2 & ST2_BC) { /* cylinder marked as bad */ printk("bad cylinder"); } else { printk("unknown error. ST[0..2] are: 0x%x 0x%x 0x%x", ST0, ST1, ST2); tell_sector(); } printk("\n"); } if ( ST2 & ST2_WC || ST2 & ST2_BC) /* wrong cylinder => recal */ DRS->track = NEED_2_RECAL; return bad; case 2: /* invalid command given */ DPRINT("Invalid FDC command given!\n"); cont->done(0); return 2; case 3: DPRINT("Abnormal termination caused by polling\n"); cont->error(); return 2; default: /* (0) Normal command termination */ return 0; } } /* * This routine is called when everything should be correctly set up * for the transfer (ie floppy motor is on, the correct floppy is * selected, and the head is sitting on the right track). */ static void setup_rw_floppy(void) { int i,ready_date,r, flags,dflags; timeout_fn function; flags = raw_cmd.flags; if ( flags & ( FD_RAW_READ | FD_RAW_WRITE)) flags |= FD_RAW_INTR; if ((flags & FD_RAW_SPIN) && !(flags & FD_RAW_NO_MOTOR)){ ready_date = DRS->spinup_date + DP->spinup; /* If spinup will take a long time, rerun scandrives * again just before spinup completion. Beware that * after scandrives, we must again wait for selection. */ if ( ready_date > jiffies + DP->select_delay){ ready_date -= DP->select_delay; function = (timeout_fn) floppy_start; } else function = (timeout_fn) setup_rw_floppy; /* wait until the floppy is spinning fast enough */ if (wait_for_completion(ready_date,function)) return; } dflags = DRS->flags; if ( (flags & FD_RAW_READ) || (flags & FD_RAW_WRITE)) setup_DMA(); if ( flags & FD_RAW_INTR ) SET_INTR(main_command_interrupt); r=0; for(i=0; i< raw_cmd.cmd_count; i++) r|=output_byte( raw_cmd.cmd[i] ); #ifdef DEBUGT debugt("rw_command: "); #endif if ( r ){ reset_fdc(); return; } if ( ! ( flags & FD_RAW_INTR )){ inr = result(); cont->interrupt(); } else if ( flags & FD_RAW_NEED_DISK ) fd_watchdog(); } static int blind_seek; /* * This is the routine called after every seek (or recalibrate) interrupt * from the floppy controller. */ static void seek_interrupt(void) { #ifdef DEBUGT debugt("seek interrupt:"); #endif if (inr != 2 || (ST0 & 0xF8) != 0x20 ) { DPRINT("seek failed\n"); DRS->track = NEED_2_RECAL; cont->error(); cont->redo(); return; } if (DRS->track >= 0 && DRS->track != ST1 && !blind_seek){ #ifdef DCL_DEBUG if (DP->flags & FD_DEBUG){ DPRINT("clearing NEWCHANGE flag because of effective seek\n"); DPRINT1("jiffies=%ld\n", jiffies); } #endif CLEARF(FD_DISK_NEWCHANGE); /* effective seek */ DRS->select_date = jiffies; } DRS->track = ST1; floppy_ready(); } static void check_wp(void) { if (TESTF(FD_VERIFY)) { /* check write protection */ output_byte( FD_GETSTATUS ); output_byte( UNIT(current_drive) ); if ( result() != 1 ){ FDCS->reset = 1; return; } CLEARF(FD_VERIFY); CLEARF(FD_NEED_TWADDLE); #ifdef DCL_DEBUG if (DP->flags & FD_DEBUG){ DPRINT("checking whether disk is write protected\n"); DPRINT1("wp=%x\n",ST3 & 0x40); } #endif if (!( ST3 & 0x40)) SETF(FD_DISK_WRITABLE); else CLEARF(FD_DISK_WRITABLE); } } static void seek_floppy(void) { int track; blind_seek=0; #ifdef DCL_DEBUG if (DP->flags & FD_DEBUG){ DPRINT("calling disk change from seek\n"); } #endif if (!TESTF(FD_DISK_NEWCHANGE) && disk_change(current_drive) && (raw_cmd.flags & FD_RAW_NEED_DISK)){ /* the media changed flag should be cleared after the seek. * If it isn't, this means that there is really no disk in * the drive. */ SETF(FD_DISK_CHANGED); cont->done(0); cont->redo(); return; } if ( DRS->track <= NEED_1_RECAL ){ recalibrate_floppy(); return; } else if (TESTF(FD_DISK_NEWCHANGE) && (raw_cmd.flags & FD_RAW_NEED_DISK) && (DRS->track <= NO_TRACK || DRS->track == raw_cmd.track)) { /* we seek to clear the media-changed condition. Does anybody * know a more elegant way, which works on all drives? */ if ( raw_cmd.track ) track = raw_cmd.track - 1; else { if(DP->flags & FD_SILENT_DCL_CLEAR){ set_dor(fdc, ~(0x10 << UNIT(current_drive)), 0); blind_seek = 1; raw_cmd.flags |= FD_RAW_NEED_SEEK; } track = 1; } } else { check_wp(); if (raw_cmd.track != DRS->track && (raw_cmd.flags & FD_RAW_NEED_SEEK)) track = raw_cmd.track; else { setup_rw_floppy(); return; } } SET_INTR(seek_interrupt); output_byte(FD_SEEK); output_byte(UNIT(current_drive)); LAST_OUT(track); #ifdef DEBUGT debugt("seek command:"); #endif } static void recal_interrupt(void) { #ifdef DEBUGT debugt("recal interrupt:"); #endif if (inr !=2 ) FDCS->reset = 1; else if (ST0 & ST0_ECE) { switch(DRS->track){ case NEED_1_RECAL: #ifdef DEBUGT debugt("recal interrupt need 1 recal:"); #endif /* after a second recalibrate, we still haven't * reached track 0. Probably no drive. Raise an * error, as failing immediately might upset * computers possessed by the Devil :-) */ cont->error(); cont->redo(); return; case NEED_2_RECAL: #ifdef DEBUGT debugt("recal interrupt need 2 recal:"); #endif /* If we already did a recalibrate, and we are not at * track 0, this means we have moved. (The only way * not to move at recalibration is to be already at * track 0.) Clear the new change flag */ #ifdef DCL_DEBUG if (DP->flags & FD_DEBUG){ DPRINT("clearing NEWCHANGE flag because of second recalibrate\n"); } #endif CLEARF(FD_DISK_NEWCHANGE); DRS->select_date = jiffies; /* fall through */ default: #ifdef DEBUGT debugt("recal interrupt default:"); #endif /* Recalibrate moves the head by at most 80 steps. If * after one recalibrate we don't have reached track * 0, this might mean that we started beyond track 80. * Try again. */ DRS->track = NEED_1_RECAL; break; } } else DRS->track = ST1; floppy_ready(); } /* * Unexpected interrupt - Print as much debugging info as we can... * All bets are off... */ static void unexpected_floppy_interrupt(void) { int i; if ( initialising ) return; if(print_unex){ DPRINT("unexpected interrupt\n"); if ( inr >= 0 ) for(i=0; ireset = 1; } struct tq_struct floppy_tq = { 0, 0, (void *) (void *) unexpected_floppy_interrupt, 0 }; /* interrupt handler */ static void floppy_interrupt(int irq, struct pt_regs * regs) { void (*handler)(void) = DEVICE_INTR; floppy_enable_hlt(); CLEAR_INTR; if ( fdc >= N_FDC || FDCS->address == -1){ /* we don't even know which FDC is the culprit */ printk("DOR0=%x\n", fdc_state[0].dor); printk("floppy interrupt on bizarre fdc %d\n",fdc); printk("handler=%p\n", handler); return; } inr = result(); if (!handler){ unexpected_floppy_interrupt(); return; } if ( inr == 0 ){ do { output_byte(FD_SENSEI); inr = result(); } while ( (ST0 & 0x83) != UNIT(current_drive) && inr == 2); } floppy_tq.routine = (void *)(void *) handler; queue_task_irq(&floppy_tq, &tq_timer); } static void recalibrate_floppy(void) { #ifdef DEBUGT debugt("recalibrate floppy:"); #endif SET_INTR(recal_interrupt); output_byte(FD_RECALIBRATE); LAST_OUT(UNIT(current_drive)); } /* * Must do 4 FD_SENSEIs after reset because of ``drive polling''. */ static void reset_interrupt(void) { #ifdef DEBUGT debugt("reset interrupt:"); #endif fdc_specify(); /* reprogram fdc */ result(); /* get the status ready for set_fdc */ if ( FDCS->reset ) cont->error(); /* a reset just after a reset. BAD! */ cont->redo(); } /* * reset is done by pulling bit 2 of DOR low for a while (old FDC's), * or by setting the self clearing bit 7 of STATUS (newer FDC's) */ static void reset_fdc(void) { SET_INTR(reset_interrupt); FDCS->reset = 0; reset_fdc_info(0); if ( FDCS->version >= FDC_82077 ) outb_p(0x80 | ( FDCS->dtr &3), FD_STATUS); else { outb_p(FDCS->dor & ~0x04, FD_DOR); udelay(FD_RESET_DELAY); outb(FDCS->dor, FD_DOR); } } static void empty(void) { } void show_floppy(void) { int i; printk("\n"); printk("floppy driver state\n"); printk("-------------------\n"); for(i=0; iaddress != -1){ printk("dor %d = %x\n", i, fdc_state[i].dor ); outb_p(fdc_state[i].address+2, fdc_state[i].dor); udelay(1000); /* maybe we'll catch an interrupt... */ } } printk("status=%x\n", inb_p(FD_STATUS)); printk("fdc_busy=%d\n", fdc_busy); if( DEVICE_INTR) printk("DEVICE_INTR=%p\n", DEVICE_INTR); if(floppy_tq.sync) printk("floppy_tq.routine=%p\n", floppy_tq.routine); if(fd_timer.prev) printk("fd_timer.function=%p\n", fd_timer.function); if(fd_timeout.prev){ printk("timer_table=%p\n",fd_timeout.function); printk("expires=%ld\n",fd_timeout.expires); printk("now=%ld\n",jiffies); } printk("cont=%p\n", cont); printk("CURRENT=%p\n", CURRENT); printk("command_status=%d\n", command_status); printk("\n"); } static void floppy_shutdown(void) { CLEAR_INTR; floppy_tq.routine = (void *)(void *) empty; del_timer( &fd_timer); floppy_enable_hlt(); disable_dma(FLOPPY_DMA); /* avoid dma going to a random drive after shutdown */ if(!initialising) DPRINT("floppy timeout\n"); FDCS->reset = 1; cont->done(0); cont->redo(); /* this will recall reset when needed */ } /*typedef void (*timeout_fn)(unsigned long);*/ /* start motor, check media-changed condition and write protection */ static int start_motor( void (*function)(void) ) { int mask, data; mask = 0xfc; data = UNIT(current_drive); if (!(raw_cmd.flags & FD_RAW_NO_MOTOR)){ if(!(FDCS->dor & ( 0x10 << UNIT(current_drive) ) )){ set_debugt(); /* no read since this drive is running */ DRS->first_read_date = 0; /* note motor start time if motor is not yet running */ DRS->spinup_date = jiffies; data |= (0x10 << UNIT(current_drive)); } } else if (FDCS->dor & ( 0x10 << UNIT(current_drive) ) ) mask &= ~(0x10 << UNIT(current_drive)); /* starts motor and selects floppy */ del_timer(motor_off_timer + current_drive); set_dor( fdc, mask, data); /* wait_for_completion also schedules reset if needed. */ return(wait_for_completion(DRS->select_date+DP->select_delay, (timeout_fn) function)); } static void floppy_ready(void) { CHECK_RESET; if(start_motor(floppy_ready)) return; if(fdc_dtr()) return; #ifdef DCL_DEBUG if (DP->flags & FD_DEBUG){ DPRINT("calling disk change from floppy_ready\n"); } #endif if(!(raw_cmd.flags & FD_RAW_NO_MOTOR) && disk_change(current_drive) && !DP->select_delay) twaddle(); /* this clears the dcl on certain drive/controller * combinations */ if ( raw_cmd.flags & (FD_RAW_NEED_SEEK | FD_RAW_NEED_DISK)){ perpendicular_mode(); fdc_specify(); /* must be done here because of hut, hlt ... */ seek_floppy(); } else setup_rw_floppy(); } static void floppy_start(void) { del_timer(&fd_timeout); fd_timeout.expires = DP->timeout; add_timer(&fd_timeout); scandrives(); #ifdef DCL_DEBUG if (DP->flags & FD_DEBUG){ DPRINT("setting NEWCHANGE in floppy_start\n"); } #endif SETF(FD_DISK_NEWCHANGE); floppy_ready(); } /* * ======================================================================== * here ends the bottom half. Exported routines are: * floppy_start, floppy_off, floppy_ready, lock_fdc, unlock_fdc, set_fdc, * start_motor, reset_fdc, reset_fdc_info, interpret_errors. * Initialisation also uses output_byte, result, set_dor, floppy_interrupt * and set_dor. * ======================================================================== */ /* * General purpose continuations. * ============================== */ static void do_wakeup(void) { del_timer(&fd_timeout); cont = 0; command_status += 2; wake_up(&command_done); } static struct cont_t wakeup_cont={ empty, do_wakeup, empty, (done_f)empty }; static int wait_til_done( void (*handler)(void ), int interruptible ) { int ret; floppy_tq.routine = (void *)(void *) handler; queue_task(&floppy_tq, &tq_timer); cli(); while(command_status < 2 && NO_SIGNAL) if (current->pid) interruptible_sleep_on(&command_done); else { sti(); run_task_queue(&tq_timer); cli(); } if(command_status < 2){ sti(); floppy_shutdown(); process_fd_request(); return -EINTR; } sti(); if ( FDCS->reset ) command_status = FD_COMMAND_ERROR; if ( command_status == FD_COMMAND_OKAY ) ret=0; else ret=-EIO; command_status = FD_COMMAND_NONE; return ret; } static void generic_done(int result) { command_status = result; cont = &wakeup_cont; } static void generic_success(void) { generic_done(1); } static void generic_failure(void) { generic_done(0); } static void success_and_wakeup(void) { generic_success(); do_wakeup(); } static void failure_and_wakeup(void) { generic_failure(); do_wakeup(); } /* * formatting and rw support. * ========================== */ static int next_valid_format(void) { int probed_format; probed_format = DRS->probed_format; while(1){ if ( probed_format >= 8 || ! DP->autodetect[probed_format] ){ DRS->probed_format = 0; return 1; } if ( floppy_type[DP->autodetect[probed_format]].sect ){ DRS->probed_format = probed_format; return 0; } probed_format++; } } static void bad_flp_intr(void) { if ( probing ){ DRS->probed_format++; if ( !next_valid_format()) return; } (*errors)++; if (*errors > DRWE->badness) DRWE->badness = *errors; if (*errors > DP->max_errors.abort) cont->done(0); if (*errors > DP->max_errors.reset) FDCS->reset = 1; else if (*errors > DP->max_errors.recal) DRS->track = NEED_2_RECAL; } static void set_floppy(int device) { if (TYPE(device)) floppy = TYPE(device) + floppy_type; else floppy = current_type[ DRIVE(device) ]; } /* * formatting and support. * ======================= */ static void format_interrupt(void) { switch (interpret_errors()){ case 1: cont->error(); case 2: break; case 0: cont->done(1); } cont->redo(); } #define CODE2SIZE (ssize = ( ( 1 << SIZECODE ) + 3 ) >> 2) #define FM_MODE(x,y) ((y) & ~(((x)->rate & 0x80 ) >>1)) #define CT(x) ( (x) | 0x40 ) static void setup_format_params(void) { struct fparm { unsigned char track,head,sect,size; } *here = (struct fparm *)floppy_track_buffer; int il,n; int count,head_shift,track_shift; raw_cmd.flags = FD_RAW_WRITE | FD_RAW_INTR | FD_RAW_SPIN | /*FD_RAW_NEED_DISK |*/ FD_RAW_NEED_SEEK; raw_cmd.rate = floppy->rate & 0x3; raw_cmd.cmd_count = NR_F; COMMAND = FM_MODE(floppy,FD_FORMAT); DR_SELECT = UNIT(current_drive) + ( format_req.head << 2 ); F_SIZECODE = FD_SIZECODE(floppy); F_SECT_PER_TRACK = floppy->sect << 2 >> F_SIZECODE; F_GAP = floppy->fmt_gap; F_FILL = FD_FILL_BYTE; current_addr = floppy_track_buffer; raw_cmd.length = 4 * F_SECT_PER_TRACK; /* allow for about 30ms for data transport per track */ head_shift = (F_SECT_PER_TRACK + 5) / 6; /* a ``cylinder'' is two tracks plus a little stepping time */ track_shift = 2 * head_shift + 1; /* position of logical sector 1 on this track */ n = (track_shift * format_req.track + head_shift * format_req.head ) % F_SECT_PER_TRACK; /* determine interleave */ il = 1; if (floppy->sect > DP->interleave_sect && F_SIZECODE == 2) il++; /* initialize field */ for (count = 0; count < F_SECT_PER_TRACK; ++count) { here[count].track = format_req.track; here[count].head = format_req.head; here[count].sect = 0; here[count].size = F_SIZECODE; } /* place logical sectors */ for (count = 1; count <= F_SECT_PER_TRACK; ++count) { here[n].sect = count; n = (n+il) % F_SECT_PER_TRACK; if (here[n].sect) { /* sector busy, find next free sector */ ++n; if (n>= F_SECT_PER_TRACK) { n-=F_SECT_PER_TRACK; while (here[n].sect) ++n; } } } } static void redo_format(void) { raw_cmd.track = format_req.track << floppy->stretch; buffer_track = -1; setup_format_params(); floppy_start(); #ifdef DEBUGT debugt("queue format request"); #endif } static struct cont_t format_cont={ format_interrupt, redo_format, bad_flp_intr, generic_done }; static int do_format(int device, struct format_descr *tmp_format_req) { int ret; int drive=DRIVE(device); LOCK_FDC(drive,1); set_floppy(device); if (!floppy || floppy->track > DP->tracks || tmp_format_req->track >= floppy->track || tmp_format_req->head >= floppy->head || (floppy->sect << 2) % (1 << FD_SIZECODE(floppy)) || !floppy->fmt_gap) { process_fd_request(); return -EINVAL; } format_req = *tmp_format_req; format_errors = 0; cont = &format_cont; errors = &format_errors; IWAIT(redo_format); process_fd_request(); return ret; } /* * Buffer read/write and support * ============================= */ /* new request_done. Can handle physical sectors which are smaller than a * logical buffer */ static void request_done(int uptodate) { int block; probing = 0; del_timer(&fd_timeout); if (!CURRENT){ DPRINT("request list destroyed in floppy request done\n"); return; } if (uptodate){ /* maintain values for invalidation on geometry change */ block = current_count_sectors + CURRENT->sector; if (block > DRS->maxblock) DRS->maxblock=block; if ( block > floppy->sect) DRS->maxtrack = 1; /* unlock chained buffers */ while (current_count_sectors && CURRENT && current_count_sectors >= CURRENT->current_nr_sectors ){ current_count_sectors -= CURRENT->current_nr_sectors; CURRENT->nr_sectors -= CURRENT->current_nr_sectors; CURRENT->sector += CURRENT->current_nr_sectors; end_request(1); } if ( current_count_sectors && CURRENT){ /* "unlock" last subsector */ CURRENT->buffer += current_count_sectors <<9; CURRENT->current_nr_sectors -= current_count_sectors; CURRENT->nr_sectors -= current_count_sectors; CURRENT->sector += current_count_sectors; return; } if ( current_count_sectors && ! CURRENT ) DPRINT("request list destroyed in floppy request done\n"); } else { if(CURRENT->cmd == WRITE) { /* record write error information */ DRWE->write_errors++; if(DRWE->write_errors == 1) { DRWE->first_error_sector = CURRENT->sector; DRWE->first_error_generation = DRS->generation; } DRWE->last_error_sector = CURRENT->sector; DRWE->last_error_generation = DRS->generation; } end_request(0); } } /* Interrupt handler evaluating the result of the r/w operation */ static void rw_interrupt(void) { int nr_sectors, ssize; if ( ! DRS->first_read_date ) DRS->first_read_date = jiffies; nr_sectors = 0; CODE2SIZE; nr_sectors = ((R_TRACK-TRACK)*floppy->head+R_HEAD-HEAD) * floppy->sect + ((R_SECTOR-SECTOR) << SIZECODE >> 2) - (sector_t % floppy->sect) % ssize; #ifdef CONFIG_FLOPPY_SANITY if ( nr_sectors > current_count_sectors + ssize - (current_count_sectors + sector_t) % ssize + sector_t % ssize){ DPRINT2("long rw: %x instead of %lx\n", nr_sectors, current_count_sectors); printk("rs=%d s=%d\n", R_SECTOR, SECTOR); printk("rh=%d h=%d\n", R_HEAD, HEAD); printk("rt=%d t=%d\n", R_TRACK, TRACK); printk("spt=%d st=%d ss=%d\n", SECT_PER_TRACK, sector_t, ssize); } #endif if ( nr_sectors < 0 ) nr_sectors = 0; if ( nr_sectors < current_count_sectors ) current_count_sectors = nr_sectors; switch (interpret_errors()){ case 2: cont->redo(); return; case 1: if ( !current_count_sectors){ cont->error(); cont->redo(); return; } break; case 0: if ( !current_count_sectors){ cont->redo(); return; } current_type[current_drive] = floppy; floppy_sizes[DRIVE(current_drive) + (FDC(current_drive) << 7)] = floppy->size >> 1; break; } if (probing) { if (DP->flags & FTD_MSG) DPRINT2("Auto-detected floppy type %s in fd%d\n", floppy->name,current_drive); current_type[current_drive] = floppy; floppy_sizes[DRIVE(current_drive) + (FDC(current_drive) << 7)] = floppy->size >> 1; probing = 0; } if ( CT(COMMAND) != FD_READ || current_addr == CURRENT->buffer ){ /* transfer directly from buffer */ cont->done(1); } else if ( CT(COMMAND) == FD_READ){ buffer_track = raw_cmd.track; buffer_drive = current_drive; if ( nr_sectors + sector_t > buffer_max ) buffer_max = nr_sectors + sector_t; } cont->redo(); } /* Compute maximal contiguous buffer size. */ static int buffer_chain_size(void) { struct buffer_head *bh; int size; char *base; base = CURRENT->buffer; size = CURRENT->current_nr_sectors << 9; bh = CURRENT->bh; if (bh){ bh = bh->b_reqnext; while ( bh && bh->b_data == base + size ){ size += bh->b_size; bh = bh->b_reqnext; } } return size >> 9; } /* Compute the maximal transfer size */ static int transfer_size(int ssize, int max_sector, int max_size) { if ( max_sector > sector_t + max_size) max_sector = sector_t + max_size; /* alignment */ max_sector -= (max_sector % floppy->sect ) % ssize; /* transfer size, beginning not aligned */ current_count_sectors = max_sector - sector_t ; return max_sector; } /* * Move data from/to the track buffer to/from the buffer cache. */ static void copy_buffer(int ssize, int max_sector, int max_sector_2) { int remaining; /* number of transferred 512-byte sectors */ struct buffer_head *bh; char *buffer, *dma_buffer; int size; if ( max_sector > max_sector_2 ) max_sector = max_sector_2; max_sector = transfer_size(ssize, max_sector, CURRENT->nr_sectors); if (current_count_sectors <= 0 && CT(COMMAND) == FD_WRITE && buffer_max > sector_t + CURRENT->nr_sectors){ current_count_sectors = buffer_max - sector_t; if ( current_count_sectors > CURRENT->nr_sectors ) current_count_sectors = CURRENT->nr_sectors; } remaining = current_count_sectors << 9; #ifdef CONFIG_FLOPPY_SANITY if ((remaining >> 9) > CURRENT->nr_sectors && CT(COMMAND) == FD_WRITE ){ DPRINT("in copy buffer\n"); printk("current_count_sectors=%ld\n", current_count_sectors); printk("remaining=%d\n", remaining >> 9); printk("CURRENT->nr_sectors=%ld\n",CURRENT->nr_sectors); printk("CURRENT->current_nr_sectors=%ld\n", CURRENT->current_nr_sectors); printk("max_sector=%d\n", max_sector); printk("ssize=%d\n", ssize); } #endif if ( max_sector > buffer_max ) buffer_max = max_sector; dma_buffer = floppy_track_buffer + ((sector_t - buffer_min) << 9); bh = CURRENT->bh; size = CURRENT->current_nr_sectors << 9; buffer = CURRENT->buffer; while ( remaining > 0){ if ( size > remaining ) size = remaining; #ifdef CONFIG_FLOPPY_SANITY if (dma_buffer + size > floppy_track_buffer + (max_buffer_sectors << 10) || dma_buffer < floppy_track_buffer ){ DPRINT1("buffer overrun in copy buffer %d\n", (int) ((floppy_track_buffer - dma_buffer) >>9)); printk("sector_t=%d buffer_min=%d\n", sector_t, buffer_min); printk("current_count_sectors=%ld\n", current_count_sectors); if ( CT(COMMAND) == FD_READ ) printk("read\n"); if ( CT(COMMAND) == FD_READ ) printk("write\n"); break; } if ( ((unsigned long)buffer) % 512 ) DPRINT1("%p buffer not aligned\n", buffer); #endif if ( CT(COMMAND) == FD_READ ) memcpy( buffer, dma_buffer, size); else memcpy( dma_buffer, buffer, size); remaining -= size; if ( !remaining) break; dma_buffer += size; bh = bh->b_reqnext; #ifdef CONFIG_FLOPPY_SANITY if ( !bh){ DPRINT("bh=null in copy buffer after copy\n"); break; } #endif size = bh->b_size; buffer = bh->b_data; } #ifdef CONFIG_FLOPPY_SANITY if ( remaining ){ if ( remaining > 0 ) max_sector -= remaining >> 9; DPRINT1("weirdness: remaining %d\n", remaining>>9); } #endif } /* * Formulate a read/write request. * this routine decides where to load the data (directly to buffer, or to * tmp floppy area), how much data to load (the size of the buffer, the whole * track, or a single sector) * All floppy_track_buffer handling goes in here. If we ever add track buffer * allocation on the fly, it should be done here. No other part should need * modification. */ static int make_raw_rw_request(void) { int aligned_sector_t; int max_sector, max_size, tracksize, ssize; set_fdc(DRIVE(CURRENT->dev)); raw_cmd.flags = FD_RAW_SPIN | FD_RAW_NEED_DISK | FD_RAW_NEED_DISK | FD_RAW_NEED_SEEK; raw_cmd.cmd_count = NR_RW; if (CURRENT->cmd == READ){ raw_cmd.flags |= FD_RAW_READ; COMMAND = FM_MODE(floppy,FD_READ); } else if (CURRENT->cmd == WRITE){ raw_cmd.flags |= FD_RAW_WRITE; COMMAND = FM_MODE(floppy,FD_WRITE); } else { DPRINT("make_raw_rw_request: unknown command\n"); return 0; } max_sector = floppy->sect * floppy->head; TRACK = CURRENT->sector / max_sector; sector_t = CURRENT->sector % max_sector; if ( floppy->track && TRACK >= floppy->track ) return 0; HEAD = sector_t / floppy->sect; if ( TESTF( FD_NEED_TWADDLE) && sector_t < floppy->sect ) max_sector = floppy->sect; /* 2M disks have phantom sectors on the first track */ if ( (floppy->rate & FD_2M ) && (!TRACK) && (!HEAD)){ max_sector = 2 * floppy->sect / 3; if (sector_t >= max_sector){ current_count_sectors = (floppy->sect - sector_t); if ( current_count_sectors > CURRENT->nr_sectors ) current_count_sectors = CURRENT->nr_sectors; return 1; } SIZECODE = 2; } else SIZECODE = FD_SIZECODE(floppy); raw_cmd.rate = floppy->rate & 3; if ((floppy->rate & FD_2M) && (TRACK || HEAD ) && raw_cmd.rate == 2) raw_cmd.rate = 1; if ( SIZECODE ) SIZECODE2 = 0xff; else SIZECODE2 = 0x80; raw_cmd.track = TRACK << floppy->stretch; DR_SELECT = UNIT(current_drive) + ( HEAD << 2 ); GAP = floppy->gap; CODE2SIZE; SECT_PER_TRACK = floppy->sect << 2 >> SIZECODE; SECTOR = ((sector_t % floppy->sect) << 2 >> SIZECODE) + 1; tracksize = floppy->sect - floppy->sect % ssize; if ( tracksize < floppy->sect ){ SECT_PER_TRACK ++; if ( tracksize <= sector_t % floppy->sect) SECTOR--; while ( tracksize <= sector_t % floppy->sect){ while( tracksize + ssize > floppy->sect ){ SIZECODE--; ssize >>= 1; } SECTOR++; SECT_PER_TRACK ++; tracksize += ssize; } max_sector = HEAD * floppy->sect + tracksize; } else if ( !TRACK && !HEAD && !( floppy->rate & FD_2M ) && probing) max_sector = floppy->sect; aligned_sector_t = sector_t - ( sector_t % floppy->sect ) % ssize; max_size = CURRENT->nr_sectors; if ((raw_cmd.track == buffer_track) && (current_drive == buffer_drive) && (sector_t >= buffer_min) && (sector_t < buffer_max)) { /* data already in track buffer */ if (CT(COMMAND) == FD_READ) { copy_buffer(1, max_sector, buffer_max); return 1; } } else if (aligned_sector_t != sector_t || CURRENT->nr_sectors < ssize){ if (CT(COMMAND) == FD_WRITE){ if(sector_t + CURRENT->nr_sectors > ssize && sector_t + CURRENT->nr_sectors < ssize + ssize) max_size = ssize + ssize; else max_size = ssize; } raw_cmd.flags &= ~FD_RAW_WRITE; raw_cmd.flags |= FD_RAW_READ; COMMAND = FM_MODE(floppy,FD_READ); } else if ((long)CURRENT->buffer <= LAST_DMA_ADDR ) { int direct, indirect; indirect= transfer_size(ssize,max_sector,max_buffer_sectors*2) - sector_t; max_size = buffer_chain_size(); if ( max_size > ( LAST_DMA_ADDR - ((long) CURRENT->buffer))>>9) max_size=(LAST_DMA_ADDR - ((long)CURRENT->buffer))>>9; /* 64 kb boundaries */ if ( ((max_size << 9) + ((long) CURRENT->buffer)) / K_64 != ((long) CURRENT->buffer ) / K_64 ) max_size = ( K_64 - ((long) CURRENT->buffer) % K_64)>>9; direct = transfer_size(ssize,max_sector,max_size) - sector_t; /* * We try to read tracks, but if we get too many errors, we * go back to reading just one sector at a time. * * This means we should be able to read a sector even if there * are other bad sectors on this track. */ if (!direct || (indirect * 2 > direct * 3 && *errors < DP->max_errors.read_track && /*!TESTF( FD_NEED_TWADDLE) &&*/ ((!probing || (DP->read_track&(1<probed_format)))))){ max_size = CURRENT->nr_sectors; } else { current_addr = CURRENT->buffer; raw_cmd.length = current_count_sectors << 9; if (raw_cmd.length == 0){ DPRINT("zero dma transfer attempted from make_raw_request\n"); DPRINT3("indirect=%d direct=%d sector_t=%d", indirect, direct, sector_t); return 0; } return 2; } } if ( CT(COMMAND) == FD_READ ) max_size = max_sector; /* unbounded */ /* claim buffer track if needed */ if (buffer_track != raw_cmd.track || /* bad track */ buffer_drive !=current_drive || /* bad drive */ sector_t > buffer_max || sector_t < buffer_min || ((CT(COMMAND) == FD_READ || (aligned_sector_t == sector_t && CURRENT->nr_sectors >= ssize ))&& max_sector > 2 * max_buffer_sectors + buffer_min && max_size + sector_t > 2 * max_buffer_sectors + buffer_min) /* not enough space */ ){ buffer_track = -1; buffer_drive = current_drive; buffer_max = buffer_min = aligned_sector_t; } current_addr = floppy_track_buffer +((aligned_sector_t-buffer_min )<<9); if ( CT(COMMAND) == FD_WRITE ){ /* copy write buffer to track buffer. * if we get here, we know that the write * is either aligned or the data already in the buffer * (buffer will be overwritten) */ #ifdef CONFIG_FLOPPY_SANITY if (sector_t != aligned_sector_t && buffer_track == -1 ) DPRINT("internal error offset !=0 on write\n"); #endif buffer_track = raw_cmd.track; buffer_drive = current_drive; copy_buffer(ssize, max_sector, 2*max_buffer_sectors+buffer_min); } else transfer_size(ssize, max_sector, 2*max_buffer_sectors+buffer_min-aligned_sector_t); /* round up current_count_sectors to get dma xfer size */ raw_cmd.length = sector_t+current_count_sectors-aligned_sector_t; raw_cmd.length = ((raw_cmd.length -1)|(ssize-1))+1; raw_cmd.length <<= 9; #ifdef CONFIG_FLOPPY_SANITY if ((raw_cmd.length < current_count_sectors << 9) || (current_addr != CURRENT->buffer && CT(COMMAND) == FD_WRITE && (aligned_sector_t + (raw_cmd.length >> 9) > buffer_max || aligned_sector_t < buffer_min )) || raw_cmd.length % ( 128 << SIZECODE ) || raw_cmd.length <= 0 || current_count_sectors <= 0){ DPRINT2("fractionary current count b=%lx s=%lx\n", raw_cmd.length, current_count_sectors); if ( current_addr != CURRENT->buffer ) printk("addr=%d, length=%ld\n", (int) ((current_addr - floppy_track_buffer ) >> 9), current_count_sectors); printk("st=%d ast=%d mse=%d msi=%d\n", sector_t, aligned_sector_t, max_sector, max_size); printk("ssize=%x SIZECODE=%d\n", ssize, SIZECODE); printk("command=%x SECTOR=%d HEAD=%d, TRACK=%d\n", COMMAND, SECTOR, HEAD, TRACK); printk("buffer drive=%d\n", buffer_drive); printk("buffer track=%d\n", buffer_track); printk("buffer_min=%d\n", buffer_min ); printk("buffer_max=%d\n", buffer_max ); return 0; } if (current_addr != CURRENT->buffer ){ if (current_addr < floppy_track_buffer || current_count_sectors < 0 || raw_cmd.length < 0 || current_addr + raw_cmd.length > floppy_track_buffer + (max_buffer_sectors << 10)){ DPRINT("buffer overrun in schedule dma\n"); printk("sector_t=%d buffer_min=%d current_count=%ld\n", sector_t, buffer_min, raw_cmd.length >> 9 ); printk("current_count_sectors=%ld\n", current_count_sectors); if ( CT(COMMAND) == FD_READ ) printk("read\n"); if ( CT(COMMAND) == FD_READ ) printk("write\n"); return 0; } } else if (raw_cmd.length > CURRENT->nr_sectors << 9 || current_count_sectors > CURRENT->nr_sectors){ DPRINT("buffer overrun in direct transfer\n"); return 0; } else if ( raw_cmd.length < current_count_sectors << 9 ){ DPRINT("more sectors than bytes\n"); printk("bytes=%ld\n", raw_cmd.length >> 9 ); printk("sectors=%ld\n", current_count_sectors); } if (raw_cmd.length == 0){ DPRINT("zero dma transfer attempted from make_raw_request\n"); return 0; } #endif return 2; } static void redo_fd_request(void) { #define REPEAT {request_done(0); continue; } int device; int tmp; int error; error = -1; if (current_drive < N_DRIVE) floppy_off(current_drive); if (CURRENT && CURRENT->dev < 0) return; while(1){ if (!CURRENT) { CLEAR_INTR; unlock_fdc(); return; } if (MAJOR(CURRENT->dev) != MAJOR_NR) panic(DEVICE_NAME ": request list destroyed"); if (CURRENT->bh && !CURRENT->bh->b_lock) panic(DEVICE_NAME ": block not locked"); #if 0 if (!CURRENT->bh->b_count && (CURRENT->errors || error == CURRENT->dev)){ error=CURRENT->dev; DPRINT("skipping read ahead buffer\n"); REPEAT; } #endif error=-1; device = CURRENT->dev; set_fdc( DRIVE(device)); del_timer(&fd_timeout); fd_timeout.expires = DP->timeout; add_timer(&fd_timeout); set_floppy(device); if(start_motor(redo_fd_request)) return; if(test_bit(current_drive, &fake_change) || TESTF(FD_DISK_CHANGED)){ DPRINT("disk absent or changed during operation\n"); REPEAT; } if (!floppy) { /* Autodetection */ if (!probing){ DRS->probed_format = 0; if ( next_valid_format() ){ DPRINT("no autodetectable formats\n"); floppy = NULL; REPEAT; } } probing = 1; floppy = floppy_type+DP->autodetect[DRS->probed_format]; } else probing = 0; errors = & (CURRENT->errors); tmp = make_raw_rw_request(); if ( tmp < 2 ){ request_done(tmp); continue; } if (TESTF(FD_NEED_TWADDLE)) twaddle(); floppy_tq.routine = (void *)(void *) floppy_start; queue_task(&floppy_tq, &tq_timer); #ifdef DEBUGT debugt("queue fd request"); #endif return; } #undef REPEAT } static struct cont_t rw_cont={ rw_interrupt, redo_fd_request, bad_flp_intr, request_done }; struct tq_struct request_tq = { 0, 0, (void *) (void *) redo_fd_request, 0 }; static void process_fd_request(void) { cont = &rw_cont; queue_task(&request_tq, &tq_timer); } static void do_fd_request(void) { if (fdc_busy) /* fdc busy, this new request will be treated when the current one is done */ return; /* fdc_busy cannot be set by an interrupt or a bh */ floppy_grab_irq_and_dma(); fdc_busy=1; process_fd_request(); } static struct cont_t poll_cont={ success_and_wakeup, floppy_ready, generic_failure, generic_done }; static int poll_drive(int interruptible, int flag){ int ret; /* no auto-sense, just clear dcl */ raw_cmd.flags= flag; raw_cmd.track=0; raw_cmd.cmd_count=0; cont = &poll_cont; #ifdef DCL_DEBUG if (DP->flags & FD_DEBUG){ DPRINT("setting NEWCHANGE in poll_drive\n"); } #endif SETF(FD_DISK_NEWCHANGE); WAIT(floppy_ready); return ret; } /* * User triggered reset * ==================== */ static void reset_intr(void) { printk("weird, reset interrupt called\n"); } static struct cont_t reset_cont={ reset_intr, success_and_wakeup, generic_failure, generic_done }; static int user_reset_fdc(int drive, int arg, int interruptible) { int ret; ret=0; if(arg == FD_RESET_IF_NEEDED && !FDCS->reset) return 0; LOCK_FDC(drive,interruptible); if(arg == FD_RESET_ALWAYS) FDCS->reset=1; if ( FDCS->reset ){ cont = &reset_cont; del_timer(&fd_timeout); fd_timeout.expires = DP->timeout; add_timer(&fd_timeout); WAIT(reset_fdc); } process_fd_request(); return ret; } /* * Misc Ioctl's and support * ======================== */ static int fd_copyout(void *param, volatile void *address, int size) { int i; i = verify_area(VERIFY_WRITE,param,size); if (i) return i; memcpy_tofs(param,(void *) address, size); return 0; } #define COPYOUT(x) (fd_copyout( (void *)param, &(x), sizeof(x))) #define COPYIN(x) (memcpy_fromfs( &(x), (void *) param, sizeof(x)),0) static char *drive_name(int type, int drive ) { struct floppy_struct *floppy; if ( type ) floppy = floppy_type + type; else { if ( UDP->native_format ) floppy = floppy_type + UDP->native_format; else return "(null)"; } if ( floppy->name ) return floppy->name; else return "(null)"; } /* raw commands */ static struct cont_t raw_cmd_cont={ success_and_wakeup, failure_and_wakeup, generic_failure, generic_done }; static int raw_cmd_ioctl(void *param) { int i, drive, count, ret; if ( FDCS->rawcmd <= 1 ) FDCS->rawcmd = 1; for ( drive= 0; drive < N_DRIVE; drive++){ if ( FDC(drive) != fdc) continue; if ( drive == current_drive ){ if ( UDRS->fd_ref > 1 ){ FDCS->rawcmd = 2; break; } } else if ( UDRS->fd_ref ){ FDCS->rawcmd = 2; break; } } if(FDCS->reset) return -EIO; COPYIN(raw_cmd); raw_cmd.rate &= 0x03; count = raw_cmd.length; if (raw_cmd.flags & (FD_RAW_WRITE | FD_RAW_READ)){ if(count > max_buffer_sectors * 1024 ) return -ENOMEM; if(count == 0){ printk("attempt to do a 0 byte dma transfer\n"); return -EINVAL; } buffer_track = -1; } if ( raw_cmd.flags & FD_RAW_WRITE ){ i = verify_area(VERIFY_READ, raw_cmd.data, count ); if (i) return i; memcpy_fromfs(floppy_track_buffer, raw_cmd.data, count); } current_addr = floppy_track_buffer; cont = &raw_cmd_cont; IWAIT(floppy_start); #ifdef DCL_DEBUG if (DP->flags & FD_DEBUG){ DPRINT("calling disk change from raw_cmd ioctl\n"); } #endif if( disk_change(current_drive) ) raw_cmd.flags |= FD_RAW_DISK_CHANGE; else raw_cmd.flags &= ~FD_RAW_DISK_CHANGE; if(raw_cmd.flags & FD_RAW_NO_MOTOR_AFTER) motor_off_callback(current_drive); if ( !ret && !FDCS->reset ){ raw_cmd.reply_count = inr; for( i=0; i< raw_cmd.reply_count; i++) raw_cmd.reply[i] = reply_buffer[i]; if ( raw_cmd.flags & ( FD_RAW_READ | FD_RAW_WRITE )) raw_cmd.length = get_dma_residue(FLOPPY_DMA); } else ret = -EIO; DRS->track = NO_TRACK; if ( ret ) return ret; if ( raw_cmd.flags & FD_RAW_READ ){ i=fd_copyout( raw_cmd.data, floppy_track_buffer, count); if (i) return i; } return COPYOUT(raw_cmd); } static int invalidate_drive(int rdev) { /* invalidate the buffer track to force a reread */ set_bit( DRIVE(rdev), &fake_change); process_fd_request(); check_disk_change(rdev); return 0; } static int fd_ioctl(struct inode *inode, struct file *filp, unsigned int cmd, unsigned long param) { #define IOCTL_MODE_BIT 8 #define OPEN_WRITE_BIT 16 #define IOCTL_ALLOWED (filp && (filp->f_mode & IOCTL_MODE_BIT)) struct floppy_struct newparams; struct format_descr tmp_format_req; int i,device,drive,type,cnt; struct floppy_struct *this_floppy; char *name; device = inode->i_rdev; switch (cmd) { RO_IOCTLS(device,param); } type = TYPE(device); drive = DRIVE(device); switch (cmd) { case FDGETDRVTYP: i=verify_area(VERIFY_WRITE,(void *) param,16); if (i) return i; name = drive_name(type,drive); for ( cnt=0; cnt<16; cnt++){ put_fs_byte(name[cnt], ((char*)param)+cnt); if ( ! *name ) break; } return 0; case FDGETMAXERRS: return COPYOUT(UDP->max_errors); case FDGETPRM: if (type) this_floppy = &floppy_type[type]; else if ((this_floppy = current_type[drive]) == NULL) return -ENODEV; return COPYOUT(this_floppy[0]); case FDPOLLDRVSTAT: LOCK_FDC(drive,1); CALL(poll_drive(1, FD_RAW_NEED_DISK)); process_fd_request(); /* fall through */ case FDGETDRVSTAT: return COPYOUT(*UDRS); case FDGETFDCSTAT: return COPYOUT(*UFDCS); case FDGETDRVPRM: return COPYOUT(*UDP); case FDWERRORGET: return COPYOUT(*UDRWE); } if (!IOCTL_ALLOWED) return -EPERM; switch (cmd) { case FDWERRORCLR: UDRWE->write_errors = 0; UDRWE->first_error_sector = 0; UDRWE->first_error_generation = 0; UDRWE->last_error_sector = 0; UDRWE->last_error_generation = 0; UDRWE->badness = 0; return 0; case FDRAWCMD: if (type) return -EINVAL; LOCK_FDC(drive,1); set_floppy(device); CALL(i = raw_cmd_ioctl((void *) param)); process_fd_request(); return i; case FDFMTTRK: if (UDRS->fd_ref != 1) return -EBUSY; COPYIN(tmp_format_req); return do_format(device, &tmp_format_req); case FDSETMAXERRS: return COPYIN(UDP->max_errors); case FDFMTBEG: return 0; case FDCLRPRM: LOCK_FDC(drive,1); current_type[drive] = NULL; floppy_sizes[drive] = MAX_DISK_SIZE; UDRS->keep_data = 0; return invalidate_drive(device); case FDFMTEND: case FDFLUSH: LOCK_FDC(drive,1); return invalidate_drive(device); case FDSETPRM: case FDDEFPRM: COPYIN(newparams); /* sanity checking for parameters.*/ if(newparams.sect <= 0 || newparams.head <= 0 || newparams.track <= 0 || newparams.track > UDP->tracks>>newparams.stretch) return -EINVAL; if ( type){ if ( !suser() ) return -EPERM; LOCK_FDC(drive,1); for ( cnt = 0; cnt < N_DRIVE; cnt++){ if (TYPE(drive_state[cnt].fd_device) == type && drive_state[cnt].fd_ref) set_bit(drive, &fake_change); } floppy_type[type] = newparams; floppy_type[type].name="user format"; for (cnt = type << 2 ; cnt < (type << 2 ) + 4 ; cnt++) floppy_sizes[cnt]= floppy_sizes[cnt+0x80]= floppy_type[type].size>>1; process_fd_request(); for ( cnt = 0; cnt < N_DRIVE; cnt++){ if (TYPE(drive_state[cnt].fd_device) == type && drive_state[cnt].fd_ref) check_disk_change(drive_state[cnt]. fd_device); } return 0; } LOCK_FDC(drive,1); if ( cmd != FDDEFPRM ) /* notice a disk change immediately, else * we loose our settings immediately*/ CALL(poll_drive(1,0)); user_params[drive] = newparams; if (buffer_drive == drive && buffer_max > user_params[drive].sect) buffer_max=user_params[drive].sect; current_type[drive] = &user_params[drive]; floppy_sizes[drive] = user_params[drive].size >> 1; if (cmd == FDDEFPRM) DRS->keep_data = -1; else DRS->keep_data = 1; /* invalidation. Invalidate only when needed, i.e. * when there are already sectors in the buffer cache * whose number will change. This is useful, because * mtools often changes the geometry of the disk after * looking at the boot block */ if (DRS->maxblock > user_params[drive].sect || DRS->maxtrack ) invalidate_drive(device); else process_fd_request(); return 0; case FDRESET: return user_reset_fdc( drive, (int)param, 1); case FDMSGON: UDP->flags |= FTD_MSG; return 0; case FDMSGOFF: UDP->flags &= ~FTD_MSG; return 0; case FDSETEMSGTRESH: UDP->max_errors.reporting = (unsigned short) (param & 0x0f); return 0; case FDTWADDLE: LOCK_FDC(drive,1); twaddle(); process_fd_request(); } if ( ! suser() ) return -EPERM; switch(cmd){ case FDSETDRVPRM: return COPYIN(*UDP); default: return -EINVAL; } return 0; #undef IOCTL_ALLOWED } static void config_types(void) { int first=1; int drive; /* read drive info out of physical cmos */ drive=0; if (!UDP->cmos ) UDP->cmos= FLOPPY0_TYPE; drive=1; if (!UDP->cmos && FLOPPY1_TYPE) UDP->cmos = FLOPPY1_TYPE; /* XXX */ /* additional physical CMOS drive detection should go here */ for (drive=0; drive < N_DRIVE; drive++){ if (UDP->cmos >= 0 && UDP->cmos <= NUMBER(default_drive_params)) memcpy((char *) UDP, (char *) (&default_drive_params[(int)UDP->cmos].params), sizeof(struct floppy_drive_params)); if (UDP->cmos){ if (first) printk("Floppy drive(s): "); else printk(", "); first=0; if (UDP->cmos > 0 ){ ALLOWED_DRIVE_MASK |= 1 << drive; printk("fd%d is %s", drive, default_drive_params[(int)UDP->cmos].name); } else printk("fd%d is unknown type %d",drive, UDP->cmos); } } if(!first) printk("\n"); } static int floppy_read(struct inode * inode, struct file * filp, char * buf, int count) { int drive = DRIVE(inode->i_rdev); check_disk_change(inode->i_rdev); if (UTESTF(FD_DISK_CHANGED)) return -ENXIO; return block_read(inode, filp, buf, count); } static int floppy_write(struct inode * inode, struct file * filp, char * buf, int count) { int block; int ret; int drive = DRIVE(inode->i_rdev); if(!UDRS->maxblock) UDRS->maxblock=1;/* make change detectable */ check_disk_change(inode->i_rdev); if (UTESTF(FD_DISK_CHANGED)) return -ENXIO; if(!UTESTF(FD_DISK_WRITABLE)) return -EROFS; block = (filp->f_pos + count) >> 9; if(block > UDRS->maxblock) UDRS->maxblock = block; ret= block_write(inode, filp, buf, count); return ret; } static void floppy_release(struct inode * inode, struct file * filp) { int drive; drive = DRIVE(inode->i_rdev); if( !filp || (filp->f_mode & (2 | OPEN_WRITE_BIT))) /* if the file is mounted OR (writable now AND writable at * open time) Linus: Does this cover all cases? */ block_fsync(inode,filp); if (UDRS->fd_ref < 0) UDRS->fd_ref=0; else if (!UDRS->fd_ref--) { DPRINT("floppy_release with fd_ref == 0"); UDRS->fd_ref = 0; } floppy_release_irq_and_dma(); } /* * floppy_open check for aliasing (/dev/fd0 can be the same as * /dev/PS0 etc), and disallows simultaneous access to the same * drive with different device numbers. */ #define RETERR(x) \ do{floppy_release(inode,filp); \ return -(x);}while(0) static int floppy_open(struct inode * inode, struct file * filp) { int drive; int old_dev; if (!filp) { DPRINT("Weird, open called with filp=0\n"); return -EIO; } drive = DRIVE(inode->i_rdev); if (drive >= N_DRIVE || !( ALLOWED_DRIVE_MASK & ( 1 << drive)) || fdc_state[FDC(drive)].version == FDC_NONE) return -ENXIO; if (TYPE(inode->i_rdev) >= NUMBER(floppy_type)) return -ENXIO; old_dev = UDRS->fd_device; if (UDRS->fd_ref && old_dev != inode->i_rdev) return -EBUSY; if(!UDRS->fd_ref && (UDP->flags & FD_BROKEN_DCL)){ USETF(FD_DISK_CHANGED); USETF(FD_VERIFY); } if(UDRS->fd_ref == -1 || (UDRS->fd_ref && (filp->f_flags & O_EXCL))) return -EBUSY; if (floppy_grab_irq_and_dma()) return -EBUSY; if (filp->f_flags & O_EXCL) UDRS->fd_ref = -1; else UDRS->fd_ref++; UDRS->fd_device = inode->i_rdev; if (old_dev && old_dev != inode->i_rdev) { if (buffer_drive == drive) buffer_track = -1; invalidate_buffers(old_dev); } /* Allow ioctls if we have write-permissions even if read-only open */ if ((filp->f_mode & 2) || (permission(inode,2) == 0)) filp->f_mode |= IOCTL_MODE_BIT; if (filp->f_mode & 2) filp->f_mode |= OPEN_WRITE_BIT; if (UFDCS->rawcmd == 1) UFDCS->rawcmd = 2; if (filp->f_flags & O_NDELAY) return 0; if (filp->f_mode & 3) { UDRS->last_checked = 0; check_disk_change(inode->i_rdev); if (UTESTF(FD_DISK_CHANGED)) RETERR(ENXIO); } if ((filp->f_mode & 2) && !(UTESTF(FD_DISK_WRITABLE))) RETERR(EROFS); return 0; #undef RETERR } /* * Check if the disk has been changed or if a change has been faked. */ static int check_floppy_change(dev_t dev) { int drive = DRIVE( dev ); if (MAJOR(dev) != MAJOR_NR) { DPRINT("floppy_changed: not a floppy\n"); return 0; } if (UTESTF(FD_DISK_CHANGED)) return 1; if(UDRS->last_checked + UDP->checkfreq < jiffies){ lock_fdc(drive,0); poll_drive(0,0); process_fd_request(); } if(UTESTF(FD_DISK_CHANGED) || test_bit(drive, &fake_change) || (!TYPE(dev) && !current_type[drive])) return 1; return 0; } /* revalidate the floppy disk, i.e. trigger format autodetection by reading * the bootblock (block 0). "Autodetection" is also needed to check whether * there is a disk in the drive at all... Thus we also do it for fixed * geometry formats */ static int floppy_revalidate(dev_t dev) { #define NO_GEOM (!current_type[drive] && !TYPE(dev)) struct buffer_head * bh; int drive=DRIVE(dev); int cf; if(UTESTF(FD_DISK_CHANGED) || test_bit(drive, &fake_change) || NO_GEOM){ lock_fdc(drive,0); cf = UTESTF(FD_DISK_CHANGED); if(! (cf || test_bit(drive, &fake_change) || NO_GEOM)){ process_fd_request(); /*already done by another thread*/ return 0; } UDRS->maxblock = 0; UDRS->maxtrack = 0; if ( buffer_drive == drive) buffer_track = -1; clear_bit(drive, &fake_change); UCLEARF(FD_DISK_CHANGED); if(cf) UDRS->generation++; if(NO_GEOM){ /* auto-sensing */ int size = floppy_blocksizes[MINOR(dev)]; if (!size) size = 1024; if (!(bh = getblk(dev,0,size))){ process_fd_request(); return 1; } if ( bh && ! bh->b_uptodate) ll_rw_block(READ, 1, &bh); process_fd_request(); wait_on_buffer(bh); brelse(bh); return 0; } if(cf) poll_drive(0, FD_RAW_NEED_DISK); process_fd_request(); } return 0; } static struct file_operations floppy_fops = { NULL, /* lseek - default */ floppy_read, /* read - general block-dev read */ floppy_write, /* write - general block-dev write */ NULL, /* readdir - bad */ NULL, /* select */ fd_ioctl, /* ioctl */ NULL, /* mmap */ floppy_open, /* open */ floppy_release, /* release */ block_fsync, /* fsync */ NULL, /* fasync */ check_floppy_change, /* media_change */ floppy_revalidate, /* revalidate */ }; /* * Floppy Driver initialisation * ============================= */ /* Determine the floppy disk controller type */ /* This routine was written by David C. Niemi */ static char get_fdc_version(void) { int r; output_byte(FD_DUMPREGS); /* 82072 and better know DUMPREGS */ if ( FDCS->reset ) return FDC_NONE; if ( (r = result()) <= 0x00) return FDC_NONE; /* No FDC present ??? */ if ((r==1) && (reply_buffer[0] == 0x80)){ printk("FDC %d is a 8272A\n",fdc); return FDC_8272A; /* 8272a/765 don't know DUMPREGS */ } if (r != 10) { printk("FDC init: DUMPREGS: unexpected return of %d bytes.\n", r); return FDC_UNKNOWN; } output_byte(FD_VERSION); r = result(); if ((r == 1) && (reply_buffer[0] == 0x80)){ printk("FDC %d is a 82072\n",fdc); return FDC_82072; /* 82072 doesn't know VERSION */ } if ((r != 1) || (reply_buffer[0] != 0x90)) { printk("FDC init: VERSION: unexpected return of %d bytes.\n", r); return FDC_UNKNOWN; } output_byte(FD_UNLOCK); r = result(); if ((r == 1) && (reply_buffer[0] == 0x80)){ printk("FDC %d is a pre-1991 82077\n", fdc); return FDC_82077_ORIG; /* Pre-1991 82077 doesn't know LOCK/UNLOCK */ } if ((r != 1) || (reply_buffer[0] != 0x00)) { printk("FDC init: UNLOCK: unexpected return of %d bytes.\n", r); return FDC_UNKNOWN; } printk("FDC %d is a post-1991 82077\n",fdc); return FDC_82077; /* Revised 82077AA passes all the tests */ } /* get_fdc_version */ /* lilo configuration */ /* we make the invert_dcl function global. One day, somebody might want to centralize all thinkpad related options into one lilo option, there are just so many thinkpad related quirks! */ void floppy_invert_dcl(int *ints,int param) { int i; for (i=0; i < ARRAY_SIZE(default_drive_params); i++){ if (param) default_drive_params[i].params.flags |= 0x80; else default_drive_params[i].params.flags &= ~0x80; } DPRINT("Configuring drives for inverted dcl\n"); } static void daring(int *ints,int param) { int i; for (i=0; i < ARRAY_SIZE(default_drive_params); i++){ if (param){ default_drive_params[i].params.select_delay = 0; default_drive_params[i].params.flags |= FD_SILENT_DCL_CLEAR; } else { default_drive_params[i].params.select_delay = 2*HZ/100; default_drive_params[i].params.flags &= ~FD_SILENT_DCL_CLEAR; } } DPRINT1("Assuming %s floppy hardware\n", param ? "standard" : "broken"); } static void allow_drives(int *ints, int param) { ALLOWED_DRIVE_MASK=param; DPRINT1("setting allowed_drive_mask to 0x%x\n", param); } static void fdc2_adr(int *ints, int param) { FDC2 = param; if(param) DPRINT1("enabling second fdc at address 0x%3x\n", FDC2); else DPRINT("disabling second fdc\n"); } static void unex(int *ints,int param) { print_unex = param; DPRINT1("%sprinting messages for unexpected interrupts\n", param ? "" : "not "); } static void set_cmos(int *ints, int dummy) { int current_drive=0; if ( ints[0] != 2 ){ DPRINT("wrong number of parameter for cmos\n"); return; } current_drive = ints[1]; if (current_drive < 0 || current_drive >= 8 ){ DPRINT("bad drive for set_cmos\n"); return; } if(ints[2] <= 0 || ints[2] >= NUMBER(default_drive_params)){ DPRINT1("bad cmos code %d\n", ints[2]); return; } DP->cmos = ints[2]; DPRINT1("setting cmos code to %d\n", ints[2]); } static struct param_table { char *name; void (*fn)(int *ints, int param); int def_param; } config_params[]={ { "allowed_drive_mask", allow_drives, 0xff }, { "all_drives", allow_drives, 0xff }, { "asus_pci", allow_drives, 0x33 }, { "daring", daring, 1}, { "two_fdc", fdc2_adr, 0x370 }, { "one_fdc", fdc2_adr, 0 }, { "thinkpad", floppy_invert_dcl, 1 }, { "cmos", set_cmos, 0 }, { "unexpected_interrupts", unex, 1 }, { "no_unexpected_interrupts", unex, 0 }, { "L40SX", unex, 0 } }; #define FLOPPY_SETUP void floppy_setup(char *str, int *ints) { int i; int param; if(!str) return; for(i=0; i< ARRAY_SIZE(config_params); i++){ if (strcmp(str,config_params[i].name) == 0 ){ if (ints[0] ) param = ints[1]; else param = config_params[i].def_param; config_params[i].fn(ints,param); return; } } DPRINT1("unknown floppy option %s\n", str); DPRINT("allowed options are:"); for(i=0; i< ARRAY_SIZE(config_params); i++) printk(" %s",config_params[i].name); printk("\n"); DPRINT("Read linux/drivers/block/README.fd\n"); } #ifdef FD_MODULE static #endif int new_floppy_init(void) { int i,drive; int have_no_fdc=0; sti(); if (register_blkdev(MAJOR_NR,"fd",&floppy_fops)) { printk("Unable to get major %d for floppy\n",MAJOR_NR); return -EBUSY; } for(i=0; i<256; i++) if ( TYPE(i)) floppy_sizes[i] = floppy_type[TYPE(i)].size >> 1; else floppy_sizes[i] = MAX_DISK_SIZE; blk_size[MAJOR_NR] = floppy_sizes; blksize_size[MAJOR_NR] = floppy_blocksizes; blk_dev[MAJOR_NR].request_fn = DEVICE_REQUEST; del_timer(&fd_timeout); config_types(); fdc_state[0].address = FDC1; fdc_state[0].dor = 0; #if N_FDC > 1 fdc_state[1].address = FDC2; fdc_state[1].dor = 0; #endif for (i = 0 ; i < N_FDC ; i++) { fdc = i; FDCS->dtr = -1; FDCS->dor = 0x4; FDCS->reset = 0; FDCS->version = FDC_NONE; } if(floppy_grab_irq_and_dma()){ unregister_blkdev(MAJOR_NR,"fd"); return -EBUSY; } /* initialise drive state */ for (drive = 0; drive < N_DRIVE ; drive++) { UDRS->flags = FD_VERIFY | FD_DISK_NEWCHANGE | FD_DISK_CHANGED; UDRS->generation = 0; UDRS->keep_data = 0; UDRS->fd_ref = 0; UDRS->fd_device = 0; UDRWE->write_errors = 0; UDRWE->first_error_sector = 0; UDRWE->first_error_generation = 0; UDRWE->last_error_sector = 0; UDRWE->last_error_generation = 0; UDRWE->badness = 0; } for (i = 0 ; i < N_FDC ; i++) { fdc = i; if (FDCS->address == -1 ) continue; FDCS->rawcmd = 2; if(user_reset_fdc(-1,FD_RESET_IF_NEEDED,0)){ FDCS->address = -1; continue; } /* Try to determine the floppy controller type */ FDCS->version = get_fdc_version(); if (FDCS->version == FDC_NONE){ FDCS->address = -1; continue; } have_no_fdc = 0; /* Not all FDCs seem to be able to handle the version command * properly, so force a reset for the standard FDC clones, * to avoid interrupt garbage. */ FDCS->has_fifo = FDCS->version >= FDC_82077_ORIG; user_reset_fdc(-1,FD_RESET_ALWAYS,0); } fdc=0; current_drive = 0; floppy_release_irq_and_dma(); initialising=0; if(have_no_fdc) unregister_blkdev(MAJOR_NR,"fd"); return have_no_fdc; } /* stupid compatibility hack... */ void floppy_init(void) { new_floppy_init(); } static int floppy_grab_irq_and_dma(void) { int i; cli(); if (usage_count++){ sti(); return 0; } sti(); #ifdef FD_MODULE MOD_INC_USE_COUNT; #endif for(i=0; i< N_FDC; i++){ if(FDCS->address != -1){ fdc = i; reset_fdc_info(1); outb_p(FDCS->dor, FD_DOR); } } set_dor(0, ~0, 8); /* avoid immediate interrupt */ if (request_irq(FLOPPY_IRQ, floppy_interrupt, SA_INTERRUPT, "floppy")) { DPRINT1("Unable to grab IRQ%d for the floppy driver\n", FLOPPY_IRQ); return -1; } if (request_dma(FLOPPY_DMA,"floppy")) { DPRINT1("Unable to grab DMA%d for the floppy driver\n", FLOPPY_DMA); free_irq(FLOPPY_IRQ); return -1; } for(fdc = 0; fdc < N_FDC ; fdc++) if(FDCS->address != -1) outb_p(FDCS->dor, FD_DOR); fdc = 0; enable_irq(FLOPPY_IRQ); return 0; } static void floppy_release_irq_and_dma(void) { #ifdef CONFIG_FLOPPY_SANITY int drive; #endif cli(); if (--usage_count){ sti(); return; } sti(); #ifdef FD_MODULE MOD_DEC_USE_COUNT; #endif disable_dma(FLOPPY_DMA); free_dma(FLOPPY_DMA); disable_irq(FLOPPY_IRQ); free_irq(FLOPPY_IRQ); set_dor(0, ~0, 8); #if N_FDC > 1 set_dor(1, ~8, 0); #endif floppy_enable_hlt(); #ifdef CONFIG_FLOPPY_SANITY for(drive=0; drive < N_FDC * 4; drive++) if( motor_off_timer[drive].next ) printk("motor off timer %d still active\n", drive); if(fd_timeout.next) printk("floppy timer still active\n"); if (fd_timer.next) printk("auxiliary floppy timer still active\n"); if(floppy_tq.sync) printk("task queue still active\n"); #endif }