/* * sr.c Copyright (C) 1992 David Giller * Copyright (C) 1993, 1994, 1995 Eric Youngdale * * adapted from: * sd.c Copyright (C) 1992 Drew Eckhardt * Linux scsi disk driver by * Drew Eckhardt * * * * Modified by Eric Youngdale ericy@cais.com to * add scatter-gather, multiple outstanding request, and other * enhancements. * * Modified by Eric Youngdale eric@aib.com to support loadable * low-level scsi drivers. */ #include #include #include #include #include #include #include #include #define MAJOR_NR SCSI_CDROM_MAJOR #include "../block/blk.h" #include "scsi.h" #include "hosts.h" #include "sr.h" #include "scsi_ioctl.h" /* For the door lock/unlock commands */ #include "constants.h" #define MAX_RETRIES 3 #define SR_TIMEOUT 15000 static void sr_init(void); static void sr_finish(void); static int sr_attach(Scsi_Device *); static int sr_detect(Scsi_Device *); static void sr_detach(Scsi_Device *); struct Scsi_Device_Template sr_template = {NULL, "cdrom", "sr", TYPE_ROM, SCSI_CDROM_MAJOR, 0, 0, 0, 1, sr_detect, sr_init, sr_finish, sr_attach, sr_detach}; Scsi_CD * scsi_CDs; static int * sr_sizes; static int * sr_blocksizes; static int sr_open(struct inode *, struct file *); static void get_sectorsize(int); extern int sr_ioctl(struct inode *, struct file *, unsigned int, unsigned long); void requeue_sr_request (Scsi_Cmnd * SCpnt); static int check_cdrom_media_change(dev_t); static void sr_release(struct inode * inode, struct file * file) { sync_dev(inode->i_rdev); if(! --scsi_CDs[MINOR(inode->i_rdev)].device->access_count) sr_ioctl(inode, NULL, SCSI_IOCTL_DOORUNLOCK, 0); if (scsi_CDs[MINOR(inode->i_rdev)].device->host->hostt->usage_count) (*scsi_CDs[MINOR(inode->i_rdev)].device->host->hostt->usage_count)--; } static struct file_operations sr_fops = { NULL, /* lseek - default */ block_read, /* read - general block-dev read */ block_write, /* write - general block-dev write */ NULL, /* readdir - bad */ NULL, /* select */ sr_ioctl, /* ioctl */ NULL, /* mmap */ sr_open, /* special open code */ sr_release, /* release */ NULL, /* fsync */ NULL, /* fasync */ check_cdrom_media_change, /* Disk change */ NULL /* revalidate */ }; /* * This function checks to see if the media has been changed in the * CDROM drive. It is possible that we have already sensed a change, * or the drive may have sensed one and not yet reported it. We must * be ready for either case. This function always reports the current * value of the changed bit. If flag is 0, then the changed bit is reset. * This function could be done as an ioctl, but we would need to have * an inode for that to work, and we do not always have one. */ int check_cdrom_media_change(dev_t full_dev){ int retval, target; struct inode inode; int flag = 0; target = MINOR(full_dev); if (target >= sr_template.nr_dev) { printk("CD-ROM request error: invalid device.\n"); return 0; }; inode.i_rdev = full_dev; /* This is all we really need here */ retval = sr_ioctl(&inode, NULL, SCSI_IOCTL_TEST_UNIT_READY, 0); if(retval){ /* Unable to test, unit probably not ready. This usually means there is no disc in the drive. Mark as changed, and we will figure it out later once the drive is available again. */ scsi_CDs[target].device->changed = 1; return 1; /* This will force a flush, if called from check_disk_change */ }; retval = scsi_CDs[target].device->changed; if(!flag) { scsi_CDs[target].device->changed = 0; /* If the disk changed, the capacity will now be different, so we force a re-read of this information */ if (retval) scsi_CDs[target].needs_sector_size = 1; }; return retval; } /* * rw_intr is the interrupt routine for the device driver. It will be notified on the * end of a SCSI read / write, and will take on of several actions based on success or failure. */ static void rw_intr (Scsi_Cmnd * SCpnt) { int result = SCpnt->result; int this_count = SCpnt->this_count; #ifdef DEBUG printk("sr.c done: %x %x\n",result, SCpnt->request.bh->b_data); #endif if (!result) { /* No error */ if (SCpnt->use_sg == 0) { if (SCpnt->buffer != SCpnt->request.buffer) { int offset; offset = (SCpnt->request.sector % 4) << 9; memcpy((char *)SCpnt->request.buffer, (char *)SCpnt->buffer + offset, this_count << 9); /* Even though we are not using scatter-gather, we look ahead and see if there is a linked request for the other half of this buffer. If there is, then satisfy it. */ if((offset == 0) && this_count == 2 && SCpnt->request.nr_sectors > this_count && SCpnt->request.bh && SCpnt->request.bh->b_reqnext && SCpnt->request.bh->b_reqnext->b_size == 1024) { memcpy((char *)SCpnt->request.bh->b_reqnext->b_data, (char *)SCpnt->buffer + 1024, 1024); this_count += 2; }; scsi_free(SCpnt->buffer, 2048); } } else { struct scatterlist * sgpnt; int i; sgpnt = (struct scatterlist *) SCpnt->buffer; for(i=0; iuse_sg; i++) { if (sgpnt[i].alt_address) { if (sgpnt[i].alt_address != sgpnt[i].address) { memcpy(sgpnt[i].alt_address, sgpnt[i].address, sgpnt[i].length); }; scsi_free(sgpnt[i].address, sgpnt[i].length); }; }; scsi_free(SCpnt->buffer, SCpnt->sglist_len); /* Free list of scatter-gather pointers */ if(SCpnt->request.sector % 4) this_count -= 2; /* See if there is a padding record at the end that needs to be removed */ if(this_count > SCpnt->request.nr_sectors) this_count -= 2; }; #ifdef DEBUG printk("(%x %x %x) ",SCpnt->request.bh, SCpnt->request.nr_sectors, this_count); #endif if (SCpnt->request.nr_sectors > this_count) { SCpnt->request.errors = 0; if (!SCpnt->request.bh) panic("sr.c: linked page request (%lx %x)", SCpnt->request.sector, this_count); } SCpnt = end_scsi_request(SCpnt, 1, this_count); /* All done */ requeue_sr_request(SCpnt); return; } /* Normal completion */ /* We only come through here if we have an error of some kind */ /* Free up any indirection buffers we allocated for DMA purposes. */ if (SCpnt->use_sg) { struct scatterlist * sgpnt; int i; sgpnt = (struct scatterlist *) SCpnt->buffer; for(i=0; iuse_sg; i++) { if (sgpnt[i].alt_address) { scsi_free(sgpnt[i].address, sgpnt[i].length); }; }; scsi_free(SCpnt->buffer, SCpnt->sglist_len); /* Free list of scatter-gather pointers */ } else { if (SCpnt->buffer != SCpnt->request.buffer) scsi_free(SCpnt->buffer, SCpnt->bufflen); }; if (driver_byte(result) != 0) { if ((SCpnt->sense_buffer[0] & 0x7f) == 0x70) { if ((SCpnt->sense_buffer[2] & 0xf) == UNIT_ATTENTION) { /* detected disc change. set a bit and quietly refuse */ /* further access. */ scsi_CDs[DEVICE_NR(SCpnt->request.dev)].device->changed = 1; SCpnt = end_scsi_request(SCpnt, 0, this_count); requeue_sr_request(SCpnt); return; } } if (SCpnt->sense_buffer[2] == ILLEGAL_REQUEST) { printk("CD-ROM error: "); print_sense("sr", SCpnt); printk("command was: "); print_command(SCpnt->cmnd); if (scsi_CDs[DEVICE_NR(SCpnt->request.dev)].ten) { scsi_CDs[DEVICE_NR(SCpnt->request.dev)].ten = 0; requeue_sr_request(SCpnt); result = 0; return; } else { SCpnt = end_scsi_request(SCpnt, 0, this_count); requeue_sr_request(SCpnt); /* Do next request */ return; } } if (SCpnt->sense_buffer[2] == NOT_READY) { printk("CDROM not ready. Make sure you have a disc in the drive.\n"); SCpnt = end_scsi_request(SCpnt, 0, this_count); requeue_sr_request(SCpnt); /* Do next request */ return; }; } /* We only get this far if we have an error we have not recognized */ if(result) { printk("SCSI CD error : host %d id %d lun %d return code = %03x\n", scsi_CDs[DEVICE_NR(SCpnt->request.dev)].device->host->host_no, scsi_CDs[DEVICE_NR(SCpnt->request.dev)].device->id, scsi_CDs[DEVICE_NR(SCpnt->request.dev)].device->lun, result); if (status_byte(result) == CHECK_CONDITION) print_sense("sr", SCpnt); SCpnt = end_scsi_request(SCpnt, 0, SCpnt->request.current_nr_sectors); requeue_sr_request(SCpnt); } } /* * Here I tried to implement better support for PhotoCD's. * * Much of this has do be done with vendor-specific SCSI-commands. * So I have to complete it step by step. Useful information is welcome. * * Actually works: * - NEC: Detection and support of multisession CD's. Special handling * for XA-disks is not necessary. * * - TOSHIBA: setting density is done here now, mounting PhotoCD's should * work now without running the program "set_density" * Multisession CD's are supported too. * * kraxel@cs.tu-berlin.de (Gerd Knorr) */ static void sr_photocd(struct inode *inode) { unsigned long sector,min,sec,frame; unsigned char buf[40]; /* the buffer for the ioctl */ unsigned char *cmd; /* the scsi-command */ unsigned char *send; /* the data we send to the drive ... */ unsigned char *rec; /* ... and get back */ int rc,is_xa,no_multi; if (scsi_CDs[MINOR(inode->i_rdev)].xa_flags & 0x02) { #ifdef DEBUG printk("sr_photocd: CDROM and/or the driver does not support multisession CD's"); #endif return; } if (!suser()) { /* I'm not the superuser, so SCSI_IOCTL_SEND_COMMAND isn't allowed for me. * That's why mpcd_sector will be initialized with zero, because I'm not * able to get the right value. Necessary only if access_count is 1, else * no disk change happened since the last call of this function and we can * keep the old value. */ if (1 == scsi_CDs[MINOR(inode->i_rdev)].device->access_count) { scsi_CDs[MINOR(inode->i_rdev)].mpcd_sector = 0; scsi_CDs[MINOR(inode->i_rdev)].xa_flags &= ~0x01; } return; } sector = 0; is_xa = 0; no_multi = 0; cmd = rec = &buf[8]; switch(scsi_CDs[MINOR(inode->i_rdev)].device->manufacturer) { case SCSI_MAN_NEC: #ifdef DEBUG printk("sr_photocd: use NEC code\n"); #endif memset(buf,0,40); *((unsigned long*)buf) = 0x0; /* we send nothing... */ *((unsigned long*)buf+1) = 0x16; /* and receive 0x16 bytes */ cmd[0] = 0xde; cmd[1] = 0x03; cmd[2] = 0xb0; rc = kernel_scsi_ioctl(scsi_CDs[MINOR(inode->i_rdev)].device, SCSI_IOCTL_SEND_COMMAND, buf); if (rc != 0) { printk("sr_photocd: ioctl error (NEC): 0x%x\n",rc); break; } if (rec[14] != 0 && rec[14] != 0xb0) { printk("sr_photocd: Hmm, seems the CDROM doesn't support multisession CD's\n"); no_multi = 1; break; } min = (unsigned long) rec[15]/16*10 + (unsigned long) rec[15]%16; sec = (unsigned long) rec[16]/16*10 + (unsigned long) rec[16]%16; frame = (unsigned long) rec[17]/16*10 + (unsigned long) rec[17]%16; sector = min*CD_SECS*CD_FRAMES + sec*CD_FRAMES + frame; is_xa = (rec[14] == 0xb0); #ifdef DEBUG if (sector) { printk("sr_photocd: multisession CD detected. start: %lu\n",sector); } #endif break; case SCSI_MAN_TOSHIBA: #ifdef DEBUG printk("sr_photocd: use TOSHIBA code\n"); #endif /* we request some disc information (is it a XA-CD ?, where starts the last session ?) */ memset(buf,0,40); *((unsigned long*)buf) = 0; *((unsigned long*)buf+1) = 4; /* we receive 4 bytes from the drive */ cmd[0] = 0xc7; cmd[1] = 3; rc = kernel_scsi_ioctl(scsi_CDs[MINOR(inode->i_rdev)].device, SCSI_IOCTL_SEND_COMMAND, buf); if (rc != 0) { if (rc == 0x28000002) { /* Got a "not ready" - error. No chance to find out if this is because there is no CD in the drive or because the drive don't knows multisession CD's. So I need to do an extra check... */ if (kernel_scsi_ioctl(scsi_CDs[MINOR(inode->i_rdev)].device, SCSI_IOCTL_TEST_UNIT_READY, NULL)) { printk("sr_photocd: drive not ready\n"); } else { printk("sr_photocd: Hmm, seems the CDROM doesn't support multisession CD's\n"); no_multi = 1; } } else printk("sr_photocd: ioctl error (TOSHIBA #1): 0x%x\n",rc); break; /* if the first ioctl fails, we don't call the second one */ } is_xa = (rec[0] == 0x20); min = (unsigned long) rec[1]/16*10 + (unsigned long) rec[1]%16; sec = (unsigned long) rec[2]/16*10 + (unsigned long) rec[2]%16; frame = (unsigned long) rec[3]/16*10 + (unsigned long) rec[3]%16; sector = min*CD_SECS*CD_FRAMES + sec*CD_FRAMES + frame; if (sector) { sector -= CD_BLOCK_OFFSET; #ifdef DEBUG printk("sr_photocd: multisession CD detected: start: %lu\n",sector); #endif } /* now we do a get_density... */ memset(buf,0,40); *((unsigned long*)buf) = 0; *((unsigned long*)buf+1) = 12; cmd[0] = 0x1a; cmd[2] = 1; cmd[4] = 12; rc = kernel_scsi_ioctl(scsi_CDs[MINOR(inode->i_rdev)].device, SCSI_IOCTL_SEND_COMMAND, buf); if (rc != 0) { printk("sr_photocd: ioctl error (TOSHIBA #2): 0x%x\n",rc); break; } #ifdef DEBUG printk("sr_photocd: get_density: 0x%x\n",rec[4]); #endif /* ...and only if necessary a set_density */ if ((rec[4] != 0x81 && is_xa) || (rec[4] != 0 && !is_xa)) { #ifdef DEBUG printk("sr_photocd: doing set_density\n"); #endif memset(buf,0,40); *((unsigned long*)buf) = 12; /* sending 12 bytes... */ *((unsigned long*)buf+1) = 0; cmd[0] = 0x15; cmd[1] = (1 << 4); cmd[4] = 12; send = &cmd[6]; /* this is a 6-Byte command */ send[ 3] = 0x08; /* the data for the command */ send[ 4] = (is_xa) ? 0x81 : 0; /* density 0x81 for XA-CD's, 0 else */ send[10] = 0x08; rc = kernel_scsi_ioctl(scsi_CDs[MINOR(inode->i_rdev)].device, SCSI_IOCTL_SEND_COMMAND, buf); if (rc != 0) { printk("sr_photocd: ioctl error (TOSHIBA #3): 0x%x\n",rc); } /* The set_density command may have changed the sector size or capacity. */ scsi_CDs[MINOR(inode->i_rdev)].needs_sector_size = 1; } break; case SCSI_MAN_NEC_OLDCDR: case SCSI_MAN_UNKNOWN: default: sector = 0; no_multi = 1; break; } scsi_CDs[MINOR(inode->i_rdev)].mpcd_sector = sector; if (is_xa) scsi_CDs[MINOR(inode->i_rdev)].xa_flags |= 0x01; else scsi_CDs[MINOR(inode->i_rdev)].xa_flags &= ~0x01; if (no_multi) scsi_CDs[MINOR(inode->i_rdev)].xa_flags |= 0x02; return; } static int sr_open(struct inode * inode, struct file * filp) { if(MINOR(inode->i_rdev) >= sr_template.nr_dev || !scsi_CDs[MINOR(inode->i_rdev)].device) return -ENXIO; /* No such device */ if (filp->f_mode & 2) return -EROFS; check_disk_change(inode->i_rdev); if(!scsi_CDs[MINOR(inode->i_rdev)].device->access_count++) sr_ioctl(inode, NULL, SCSI_IOCTL_DOORLOCK, 0); if (scsi_CDs[MINOR(inode->i_rdev)].device->host->hostt->usage_count) (*scsi_CDs[MINOR(inode->i_rdev)].device->host->hostt->usage_count)++; sr_photocd(inode); /* If this device did not have media in the drive at boot time, then we would have been unable to get the sector size. Check to see if this is the case, and try again. */ if(scsi_CDs[MINOR(inode->i_rdev)].needs_sector_size) get_sectorsize(MINOR(inode->i_rdev)); return 0; } /* * do_sr_request() is the request handler function for the sr driver. Its function in life * is to take block device requests, and translate them to SCSI commands. */ static void do_sr_request (void) { Scsi_Cmnd * SCpnt = NULL; struct request * req = NULL; unsigned long flags; int flag = 0; while (1==1){ save_flags(flags); cli(); if (CURRENT != NULL && CURRENT->dev == -1) { restore_flags(flags); return; }; INIT_SCSI_REQUEST; if (flag++ == 0) SCpnt = allocate_device(&CURRENT, scsi_CDs[DEVICE_NR(MINOR(CURRENT->dev))].device, 0); else SCpnt = NULL; restore_flags(flags); /* This is a performance enhancement. We dig down into the request list and try and find a queueable request (i.e. device not busy, and host able to accept another command. If we find one, then we queue it. This can make a big difference on systems with more than one disk drive. We want to have the interrupts off when monkeying with the request list, because otherwise the kernel might try and slip in a request in between somewhere. */ if (!SCpnt && sr_template.nr_dev > 1){ struct request *req1; req1 = NULL; save_flags(flags); cli(); req = CURRENT; while(req){ SCpnt = request_queueable(req, scsi_CDs[DEVICE_NR(MINOR(req->dev))].device); if(SCpnt) break; req1 = req; req = req->next; }; if (SCpnt && req->dev == -1) { if (req == CURRENT) CURRENT = CURRENT->next; else req1->next = req->next; }; restore_flags(flags); }; if (!SCpnt) return; /* Could not find anything to do */ wake_up(&wait_for_request); /* Queue command */ requeue_sr_request(SCpnt); }; /* While */ } void requeue_sr_request (Scsi_Cmnd * SCpnt) { unsigned int dev, block, realcount; unsigned char cmd[10], *buffer, tries; int this_count, start, end_rec; tries = 2; repeat: if(!SCpnt || SCpnt->request.dev <= 0) { do_sr_request(); return; } dev = MINOR(SCpnt->request.dev); block = SCpnt->request.sector; buffer = NULL; this_count = 0; if (dev >= sr_template.nr_dev) { /* printk("CD-ROM request error: invalid device.\n"); */ SCpnt = end_scsi_request(SCpnt, 0, SCpnt->request.nr_sectors); tries = 2; goto repeat; } if (!scsi_CDs[dev].use) { /* printk("CD-ROM request error: device marked not in use.\n"); */ SCpnt = end_scsi_request(SCpnt, 0, SCpnt->request.nr_sectors); tries = 2; goto repeat; } if (scsi_CDs[dev].device->changed) { /* * quietly refuse to do anything to a changed disc until the changed bit has been reset */ /* printk("CD-ROM has been changed. Prohibiting further I/O.\n"); */ SCpnt = end_scsi_request(SCpnt, 0, SCpnt->request.nr_sectors); tries = 2; goto repeat; } switch (SCpnt->request.cmd) { case WRITE: SCpnt = end_scsi_request(SCpnt, 0, SCpnt->request.nr_sectors); goto repeat; break; case READ : cmd[0] = READ_6; break; default : panic ("Unknown sr command %d\n", SCpnt->request.cmd); } cmd[1] = (SCpnt->lun << 5) & 0xe0; /* Now do the grungy work of figuring out which sectors we need, and where in memory we are going to put them. The variables we need are: this_count= number of 512 byte sectors being read block = starting cdrom sector to read. realcount = # of cdrom sectors to read The major difference between a scsi disk and a scsi cdrom is that we will always use scatter-gather if we can, because we can work around the fact that the buffer cache has a block size of 1024, and we have 2048 byte sectors. This code should work for buffers that are any multiple of 512 bytes long. */ SCpnt->use_sg = 0; if (SCpnt->host->sg_tablesize > 0 && (!need_isa_buffer || dma_free_sectors >= 10)) { struct buffer_head * bh; struct scatterlist * sgpnt; int count, this_count_max; bh = SCpnt->request.bh; this_count = 0; count = 0; this_count_max = (scsi_CDs[dev].ten ? 0xffff : 0xff) << 4; /* Calculate how many links we can use. First see if we need a padding record at the start */ this_count = SCpnt->request.sector % 4; if(this_count) count++; while(bh && count < SCpnt->host->sg_tablesize) { if ((this_count + (bh->b_size >> 9)) > this_count_max) break; this_count += (bh->b_size >> 9); count++; bh = bh->b_reqnext; }; /* Fix up in case of an odd record at the end */ end_rec = 0; if(this_count % 4) { if (count < SCpnt->host->sg_tablesize) { count++; end_rec = (4 - (this_count % 4)) << 9; this_count += 4 - (this_count % 4); } else { count--; this_count -= (this_count % 4); }; }; SCpnt->use_sg = count; /* Number of chains */ count = 512;/* scsi_malloc can only allocate in chunks of 512 bytes*/ while( count < (SCpnt->use_sg * sizeof(struct scatterlist))) count = count << 1; SCpnt->sglist_len = count; sgpnt = (struct scatterlist * ) scsi_malloc(count); if (!sgpnt) { printk("Warning - running *really* short on DMA buffers\n"); SCpnt->use_sg = 0; /* No memory left - bail out */ } else { buffer = (unsigned char *) sgpnt; count = 0; bh = SCpnt->request.bh; if(SCpnt->request.sector % 4) { sgpnt[count].length = (SCpnt->request.sector % 4) << 9; sgpnt[count].address = (char *) scsi_malloc(sgpnt[count].length); if(!sgpnt[count].address) panic("SCSI DMA pool exhausted."); sgpnt[count].alt_address = sgpnt[count].address; /* Flag to delete if needed */ count++; }; for(bh = SCpnt->request.bh; count < SCpnt->use_sg; count++, bh = bh->b_reqnext) { if (bh) { /* Need a placeholder at the end of the record? */ sgpnt[count].address = bh->b_data; sgpnt[count].length = bh->b_size; sgpnt[count].alt_address = NULL; } else { sgpnt[count].address = (char *) scsi_malloc(end_rec); if(!sgpnt[count].address) panic("SCSI DMA pool exhausted."); sgpnt[count].length = end_rec; sgpnt[count].alt_address = sgpnt[count].address; if (count+1 != SCpnt->use_sg) panic("Bad sr request list"); break; }; if (((int) sgpnt[count].address) + sgpnt[count].length > ISA_DMA_THRESHOLD & (SCpnt->host->unchecked_isa_dma)) { sgpnt[count].alt_address = sgpnt[count].address; /* We try and avoid exhausting the DMA pool, since it is easier to control usage here. In other places we might have a more pressing need, and we would be screwed if we ran out */ if(dma_free_sectors < (sgpnt[count].length >> 9) + 5) { sgpnt[count].address = NULL; } else { sgpnt[count].address = (char *) scsi_malloc(sgpnt[count].length); }; /* If we start running low on DMA buffers, we abort the scatter-gather operation, and free all of the memory we have allocated. We want to ensure that all scsi operations are able to do at least a non-scatter/gather operation */ if(sgpnt[count].address == NULL){ /* Out of dma memory */ printk("Warning: Running low on SCSI DMA buffers"); /* Try switching back to a non scatter-gather operation. */ while(--count >= 0){ if(sgpnt[count].alt_address) scsi_free(sgpnt[count].address, sgpnt[count].length); }; SCpnt->use_sg = 0; scsi_free(buffer, SCpnt->sglist_len); break; }; /* if address == NULL */ }; /* if need DMA fixup */ }; /* for loop to fill list */ #ifdef DEBUG printk("SR: %d %d %d %d %d *** ",SCpnt->use_sg, SCpnt->request.sector, this_count, SCpnt->request.current_nr_sectors, SCpnt->request.nr_sectors); for(count=0; countuse_sg; count++) printk("SGlist: %d %x %x %x\n", count, sgpnt[count].address, sgpnt[count].alt_address, sgpnt[count].length); #endif }; /* Able to allocate scatter-gather list */ }; if (SCpnt->use_sg == 0){ /* We cannot use scatter-gather. Do this the old fashion way */ if (!SCpnt->request.bh) this_count = SCpnt->request.nr_sectors; else this_count = (SCpnt->request.bh->b_size >> 9); start = block % 4; if (start) { this_count = ((this_count > 4 - start) ? (4 - start) : (this_count)); buffer = (unsigned char *) scsi_malloc(2048); } else if (this_count < 4) { buffer = (unsigned char *) scsi_malloc(2048); } else { this_count -= this_count % 4; buffer = (unsigned char *) SCpnt->request.buffer; if (((int) buffer) + (this_count << 9) > ISA_DMA_THRESHOLD & (SCpnt->host->unchecked_isa_dma)) buffer = (unsigned char *) scsi_malloc(this_count << 9); } }; if (scsi_CDs[dev].sector_size == 2048) block = block >> 2; /* These are the sectors that the cdrom uses */ else block = block & 0xfffffffc; realcount = (this_count + 3) / 4; if (scsi_CDs[dev].sector_size == 512) realcount = realcount << 2; if (((realcount > 0xff) || (block > 0x1fffff)) && scsi_CDs[dev].ten) { if (realcount > 0xffff) { realcount = 0xffff; this_count = realcount * (scsi_CDs[dev].sector_size >> 9); } cmd[0] += READ_10 - READ_6 ; cmd[2] = (unsigned char) (block >> 24) & 0xff; cmd[3] = (unsigned char) (block >> 16) & 0xff; cmd[4] = (unsigned char) (block >> 8) & 0xff; cmd[5] = (unsigned char) block & 0xff; cmd[6] = cmd[9] = 0; cmd[7] = (unsigned char) (realcount >> 8) & 0xff; cmd[8] = (unsigned char) realcount & 0xff; } else { if (realcount > 0xff) { realcount = 0xff; this_count = realcount * (scsi_CDs[dev].sector_size >> 9); } cmd[1] |= (unsigned char) ((block >> 16) & 0x1f); cmd[2] = (unsigned char) ((block >> 8) & 0xff); cmd[3] = (unsigned char) block & 0xff; cmd[4] = (unsigned char) realcount; cmd[5] = 0; } #ifdef DEBUG { int i; printk("ReadCD: %d %d %d %d\n",block, realcount, buffer, this_count); printk("Use sg: %d\n", SCpnt->use_sg); printk("Dumping command: "); for(i=0; i<12; i++) printk("%2.2x ", cmd[i]); printk("\n"); }; #endif /* Some dumb host adapters can speed transfers by knowing the * minimum transfersize in advance. * * We shouldn't disconnect in the middle of a sector, but the cdrom * sector size can be larger than the size of a buffer and the * transfer may be split to the size of a buffer. So it's safe to * assume that we can at least transfer the minimum of the buffer * size (1024) and the sector size between each connect / disconnect. */ SCpnt->transfersize = (scsi_CDs[dev].sector_size > 1024) ? 1024 : scsi_CDs[dev].sector_size; SCpnt->this_count = this_count; scsi_do_cmd (SCpnt, (void *) cmd, buffer, realcount * scsi_CDs[dev].sector_size, rw_intr, SR_TIMEOUT, MAX_RETRIES); } static int sr_detect(Scsi_Device * SDp){ if(SDp->type != TYPE_ROM && SDp->type != TYPE_WORM) return 0; printk("Detected scsi CD-ROM sr%d at scsi%d, id %d, lun %d\n", sr_template.dev_noticed++, SDp->host->host_no , SDp->id, SDp->lun); return 1; } static int sr_attach(Scsi_Device * SDp){ Scsi_CD * cpnt; int i; if(SDp->type != TYPE_ROM && SDp->type != TYPE_WORM) return 1; if (sr_template.nr_dev >= sr_template.dev_max) { SDp->attached--; return 1; } for(cpnt = scsi_CDs, i=0; idevice) break; if(i >= sr_template.dev_max) panic ("scsi_devices corrupt (sr)"); SDp->scsi_request_fn = do_sr_request; scsi_CDs[i].device = SDp; sr_template.nr_dev++; if(sr_template.nr_dev > sr_template.dev_max) panic ("scsi_devices corrupt (sr)"); return 0; } static void sr_init_done (Scsi_Cmnd * SCpnt) { struct request * req; req = &SCpnt->request; req->dev = 0xfffe; /* Busy, but indicate request done */ if (req->sem != NULL) { up(req->sem); } } static void get_sectorsize(int i){ unsigned char cmd[10]; unsigned char *buffer; int the_result, retries; Scsi_Cmnd * SCpnt; buffer = (unsigned char *) scsi_malloc(512); SCpnt = allocate_device(NULL, scsi_CDs[i].device, 1); retries = 3; do { cmd[0] = READ_CAPACITY; cmd[1] = (scsi_CDs[i].device->lun << 5) & 0xe0; memset ((void *) &cmd[2], 0, 8); SCpnt->request.dev = 0xffff; /* Mark as really busy */ SCpnt->cmd_len = 0; memset(buffer, 0, 8); scsi_do_cmd (SCpnt, (void *) cmd, (void *) buffer, 512, sr_init_done, SR_TIMEOUT, MAX_RETRIES); if (current == task[0]) while(SCpnt->request.dev != 0xfffe) barrier(); else if (SCpnt->request.dev != 0xfffe){ struct semaphore sem = MUTEX_LOCKED; SCpnt->request.sem = &sem; down(&sem); /* Hmm.. Have to ask about this */ while (SCpnt->request.dev != 0xfffe) schedule(); }; the_result = SCpnt->result; retries--; } while(the_result && retries); SCpnt->request.dev = -1; /* Mark as not busy */ wake_up(&SCpnt->device->device_wait); if (the_result) { scsi_CDs[i].capacity = 0x1fffff; scsi_CDs[i].sector_size = 2048; /* A guess, just in case */ scsi_CDs[i].needs_sector_size = 1; } else { scsi_CDs[i].capacity = (buffer[0] << 24) | (buffer[1] << 16) | (buffer[2] << 8) | buffer[3]; scsi_CDs[i].sector_size = (buffer[4] << 24) | (buffer[5] << 16) | (buffer[6] << 8) | buffer[7]; if(scsi_CDs[i].sector_size == 0) scsi_CDs[i].sector_size = 2048; if(scsi_CDs[i].sector_size != 2048 && scsi_CDs[i].sector_size != 512) { printk ("scd%d : unsupported sector size %d.\n", i, scsi_CDs[i].sector_size); scsi_CDs[i].capacity = 0; scsi_CDs[i].needs_sector_size = 1; }; if(scsi_CDs[i].sector_size == 2048) scsi_CDs[i].capacity *= 4; scsi_CDs[i].needs_sector_size = 0; sr_sizes[i] = scsi_CDs[i].capacity; }; scsi_free(buffer, 512); } static void sr_init() { int i; static int sr_registered = 0; if(sr_template.dev_noticed == 0) return; if(!sr_registered) { if (register_blkdev(MAJOR_NR,"sr",&sr_fops)) { printk("Unable to get major %d for SCSI-CD\n",MAJOR_NR); return; } sr_registered++; } if (scsi_CDs) return; sr_template.dev_max = sr_template.dev_noticed + SR_EXTRA_DEVS; scsi_CDs = (Scsi_CD *) scsi_init_malloc(sr_template.dev_max * sizeof(Scsi_CD), GFP_ATOMIC); memset(scsi_CDs, 0, sr_template.dev_max * sizeof(Scsi_CD)); sr_sizes = (int *) scsi_init_malloc(sr_template.dev_max * sizeof(int), GFP_ATOMIC); memset(sr_sizes, 0, sr_template.dev_max * sizeof(int)); sr_blocksizes = (int *) scsi_init_malloc(sr_template.dev_max * sizeof(int), GFP_ATOMIC); for(i=0;ihost->sg_tablesize) read_ahead[MAJOR_NR] = 32; /* 32 sector read-ahead. Always removable. */ else read_ahead[MAJOR_NR] = 4; /* 4 sector read-ahead */ return; } static void sr_detach(Scsi_Device * SDp) { Scsi_CD * cpnt; int i, major; major = MAJOR_NR << 8; for(cpnt = scsi_CDs, i=0; idevice == SDp) { /* * Since the cdrom is read-only, no need to sync the device. * We should be kind to our buffer cache, however. */ invalidate_inodes(major | i); invalidate_buffers(major | i); /* * Reset things back to a sane state so that one can re-load a new * driver (perhaps the same one). */ cpnt->device = NULL; cpnt->capacity = 0; SDp->attached--; sr_template.nr_dev--; sr_template.dev_noticed--; sr_sizes[i] = 0; return; } return; } /* * Overrides for Emacs so that we follow Linus's tabbing style. * Emacs will notice this stuff at the end of the file and automatically * adjust the settings for this buffer only. This must remain at the end * of the file. * --------------------------------------------------------------------------- * Local variables: * c-indent-level: 8 * c-brace-imaginary-offset: 0 * c-brace-offset: -8 * c-argdecl-indent: 8 * c-label-offset: -8 * c-continued-statement-offset: 8 * c-continued-brace-offset: 0 * End: */